Sequential- and Parallel- Constrained Max-value Entropy Search via
Information Lower Bound
- URL: http://arxiv.org/abs/2102.09788v1
- Date: Fri, 19 Feb 2021 08:10:51 GMT
- Title: Sequential- and Parallel- Constrained Max-value Entropy Search via
Information Lower Bound
- Authors: Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and Masayuki Karasuyama
- Abstract summary: We focus on an information-theoretic approach called Max-value Entropy Search (MES)
We propose a novel constrained BO method called Constrained Max-value Entropy Search via Information lower BOund (CMES-IBO)
- Score: 9.09466320810472
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, several Bayesian optimization (BO) methods have been extended to
the expensive black-box optimization problem with unknown constraints, which is
an important problem that appears frequently in practice. We focus on an
information-theoretic approach called Max-value Entropy Search (MES) whose
superior performance has been repeatedly shown in BO literature. Since existing
MES-based constrained BO is restricted to only one constraint, we first extend
it to multiple constraints, but we found that this approach can cause negative
approximate values for the mutual information, which can result in unreasonable
decisions. In this paper, we employ a different approximation strategy that is
based on a lower bound of the mutual information, and propose a novel
constrained BO method called Constrained Max-value Entropy Search via
Information lower BOund (CMES-IBO). Our approximate mutual information derived
from the lower bound has a simple closed-form that is guaranteed to be
nonnegative, and we show that irrational behavior caused by the negative value
can be avoided. Furthermore, by using conditional mutual information, we extend
our methods to the parallel setting in which multiple queries can be issued
simultaneously. Finally, we demonstrate the effectiveness of our proposed
methods by benchmark functions and real-world applications to materials
science.
Related papers
- Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition [0.38233569758620056]
We present a method for maximum a-posteriori inference in general Bayesian factor models.
We derive MAP estimation algorithms for the Bayesian Gaussian mixture model and latent Dirichlet allocation.
arXiv Detail & Related papers (2024-10-24T19:57:56Z) - Sound Heuristic Search Value Iteration for Undiscounted POMDPs with Reachability Objectives [16.101435842520473]
This paper studies the challenging yet important problem in POMDPs known as the (indefinite-horizon) Maximal Reachability Probability Problem.
Inspired by the success of point-based methods developed for discounted problems, we study their extensions to MRPP.
We present a novel algorithm that leverages the strengths of these techniques for efficient exploration of the belief space.
arXiv Detail & Related papers (2024-06-05T02:33:50Z) - No-Regret Constrained Bayesian Optimization of Noisy and Expensive
Hybrid Models using Differentiable Quantile Function Approximations [0.0]
Constrained Upper Quantile Bound (CUQB) is a conceptually simple, deterministic approach that avoids constraint approximations.
We show that CUQB significantly outperforms traditional Bayesian optimization in both constrained and unconstrained cases.
arXiv Detail & Related papers (2023-05-05T19:57:36Z) - Limitations of Information-Theoretic Generalization Bounds for Gradient
Descent Methods in Stochastic Convex Optimization [48.12845778927164]
We consider the prospect of establishing minimax rates for gradient descent in the setting of convex optimization.
We consider a common tactic employed in studying gradient methods, whereby the final iterate is corrupted by Gaussian noise, producing a noisy "surrogate" algorithm.
Our results suggest that new ideas are required to analyze gradient descent using information-theoretic techniques.
arXiv Detail & Related papers (2022-12-27T17:16:48Z) - Interactively Learning Preference Constraints in Linear Bandits [100.78514640066565]
We study sequential decision-making with known rewards and unknown constraints.
As an application, we consider learning constraints to represent human preferences in a driving simulation.
arXiv Detail & Related papers (2022-06-10T17:52:58Z) - LSDAT: Low-Rank and Sparse Decomposition for Decision-based Adversarial
Attack [74.5144793386864]
LSDAT crafts perturbations in the low-dimensional subspace formed by the sparse component of the input sample and that of an adversarial sample.
LSD works directly in the image pixel domain to guarantee that non-$ell$ constraints, such as sparsity, are satisfied.
arXiv Detail & Related papers (2021-03-19T13:10:47Z) - Sparse Feature Selection Makes Batch Reinforcement Learning More Sample
Efficient [62.24615324523435]
This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation.
When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware methods can make batch RL more sample efficient.
arXiv Detail & Related papers (2020-11-08T16:48:02Z) - CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information [105.73798100327667]
We propose a novel Contrastive Log-ratio Upper Bound (CLUB) of mutual information.
We provide a theoretical analysis of the properties of CLUB and its variational approximation.
Based on this upper bound, we introduce a MI minimization training scheme and further accelerate it with a negative sampling strategy.
arXiv Detail & Related papers (2020-06-22T05:36:16Z) - Parallel Predictive Entropy Search for Multi-objective Bayesian
Optimization with Constraints [0.0]
Real-world problems often involve the optimization of several objectives under multiple constraints.
This article introduces PPESMOC, an information-based batch method for the simultaneous optimization of black-box functions.
Iteratively, PPESMOC selects a batch of input locations at which to evaluate the black-boxes.
arXiv Detail & Related papers (2020-04-01T17:37:58Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
We propose a novel technique for analyzing adaptive sampling called the em Simulator.
We prove the first instance-based lower bounds the top-k problem which incorporate the appropriate log-factors.
Our new analysis inspires a simple and near-optimal for the best-arm and top-k identification, the first em practical of its kind for the latter problem.
arXiv Detail & Related papers (2017-02-16T23:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.