Re-rank Coarse Classification with Local Region Enhanced Features for
Fine-Grained Image Recognition
- URL: http://arxiv.org/abs/2102.09875v1
- Date: Fri, 19 Feb 2021 11:30:25 GMT
- Title: Re-rank Coarse Classification with Local Region Enhanced Features for
Fine-Grained Image Recognition
- Authors: Shaokang Yang, Shuai Liu, Cheng Yang, Changhu Wang
- Abstract summary: We re-rank the TopN classification results by using the local region enhanced embedding features to improve the Top1 accuracy.
To learn more effective semantic global features, we design a multi-level loss over an automatically constructed hierarchical category structure.
Our method achieves state-of-the-art performance on three benchmarks: CUB-200-2011, Stanford Cars, and FGVC Aircraft.
- Score: 22.83821575990778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-grained image recognition is very challenging due to the difficulty of
capturing both semantic global features and discriminative local features.
Meanwhile, these two features are not easy to be integrated, which are even
conflicting when used simultaneously. In this paper, a retrieval-based
coarse-to-fine framework is proposed, where we re-rank the TopN classification
results by using the local region enhanced embedding features to improve the
Top1 accuracy (based on the observation that the correct category usually
resides in TopN results). To obtain the discriminative regions for
distinguishing the fine-grained images, we introduce a weakly-supervised method
to train a box generating branch with only image-level labels. In addition, to
learn more effective semantic global features, we design a multi-level loss
over an automatically constructed hierarchical category structure. Experimental
results show that our method achieves state-of-the-art performance on three
benchmarks: CUB-200-2011, Stanford Cars, and FGVC Aircraft. Also,
visualizations and analysis are provided for better understanding.
Related papers
- Siamese Transformer Networks for Few-shot Image Classification [9.55588609556447]
Humans exhibit remarkable proficiency in visual classification tasks, accurately recognizing and classifying new images with minimal examples.
Existing few-shot image classification methods often emphasize either global features or local features, with few studies considering the integration of both.
We propose a novel approach based on the Siamese Transformer Network (STN)
Our strategy effectively harnesses the potential of global and local features in few-shot image classification, circumventing the need for complex feature adaptation modules.
arXiv Detail & Related papers (2024-07-16T14:27:23Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - DenseGAP: Graph-Structured Dense Correspondence Learning with Anchor
Points [15.953570826460869]
Establishing dense correspondence between two images is a fundamental computer vision problem.
We introduce DenseGAP, a new solution for efficient Dense correspondence learning with a Graph-structured neural network conditioned on Anchor Points.
Our method advances the state-of-the-art of correspondence learning on most benchmarks.
arXiv Detail & Related papers (2021-12-13T18:59:30Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
Weakly supervised localization aims at finding target object regions using only image-level supervision.
We propose to leverage pixel-level similarities across different objects for learning more accurate object locations.
Our method achieves the Top-1 localization error rate of 45.17% on the ILSVRC validation set.
arXiv Detail & Related papers (2020-08-12T04:14:11Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
We present an efficient localization module that can be fused with a classification network in an end-to-end setup.
We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft.
arXiv Detail & Related papers (2020-05-11T14:07:06Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z) - Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning [0.5156484100374058]
Few-shot learning aims to learn novel visual categories from very few samples.
We propose a Self-Attention Based Complementary Module (SAC Module) to fulfill the weakly-supervised object localization.
We also produce the activated masks for selecting discriminative deep descriptors for few-shot classification.
arXiv Detail & Related papers (2020-03-02T14:07:05Z) - Weakly Supervised Attention Pyramid Convolutional Neural Network for
Fine-Grained Visual Classification [71.96618723152487]
We introduce Attention Pyramid Convolutional Neural Network (AP-CNN)
AP-CNN learns both high-level semantic and low-level detailed feature representation.
It can be trained end-to-end, without the need of additional bounding box/part annotations.
arXiv Detail & Related papers (2020-02-09T12:33:23Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.