Hierarchical Scoring with 3D Gaussian Splatting for Instance Image-Goal Navigation
- URL: http://arxiv.org/abs/2506.07338v1
- Date: Mon, 09 Jun 2025 00:58:14 GMT
- Title: Hierarchical Scoring with 3D Gaussian Splatting for Instance Image-Goal Navigation
- Authors: Yijie Deng, Shuaihang Yuan, Geeta Chandra Raju Bethala, Anthony Tzes, Yu-Shen Liu, Yi Fang,
- Abstract summary: Instance Image-Goal Navigation (IIN) requires autonomous agents to identify and navigate to a target object or location depicted in a reference image captured from any viewpoint.<n>We introduce a novel IIN framework with a hierarchical scoring paradigm that estimates optimal viewpoints for target matching.
- Score: 27.040017548286812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instance Image-Goal Navigation (IIN) requires autonomous agents to identify and navigate to a target object or location depicted in a reference image captured from any viewpoint. While recent methods leverage powerful novel view synthesis (NVS) techniques, such as three-dimensional Gaussian splatting (3DGS), they typically rely on randomly sampling multiple viewpoints or trajectories to ensure comprehensive coverage of discriminative visual cues. This approach, however, creates significant redundancy through overlapping image samples and lacks principled view selection, substantially increasing both rendering and comparison overhead. In this paper, we introduce a novel IIN framework with a hierarchical scoring paradigm that estimates optimal viewpoints for target matching. Our approach integrates cross-level semantic scoring, utilizing CLIP-derived relevancy fields to identify regions with high semantic similarity to the target object class, with fine-grained local geometric scoring that performs precise pose estimation within promising regions. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on simulated IIN benchmarks and real-world applicability.
Related papers
- Hi^2-GSLoc: Dual-Hierarchical Gaussian-Specific Visual Relocalization for Remote Sensing [6.997091164331322]
Visual relocalization is fundamental to remote sensing and UAV applications.<n>Existing methods face inherent trade-offs: image-based retrieval and pose regression approaches lack precision.<n>We introduce $mathrmHi2$-GSLoc, a dual-hierarchical relocalization framework that follows a sparse-to-dense and coarse-to-fine paradigm.
arXiv Detail & Related papers (2025-07-21T14:47:56Z) - A Multi-Level Similarity Approach for Single-View Object Grasping: Matching, Planning, and Fine-Tuning [17.162675084829242]
We propose a method that robustly achieves unknown-object grasping from a single viewpoint through three key steps.<n>We propose a multi-level similarity matching framework that integrates semantic, geometric, and dimensional features for comprehensive evaluation.<n>In addition, we incorporate the use of large language models, introduce the semi-oriented bounding box, and develop a novel point cloud registration approach based on plane detection to enhance matching accuracy under single-view conditions.
arXiv Detail & Related papers (2025-07-16T06:07:57Z) - Zero-shot Inexact CAD Model Alignment from a Single Image [53.37898107159792]
A practical approach to infer 3D scene structure from a single image is to retrieve a closely matching 3D model from a database and align it with the object in the image.<n>Existing methods rely on supervised training with images and pose annotations, which limits them to a narrow set of object categories.<n>We propose a weakly supervised 9-DoF alignment method for inexact 3D models that requires no pose annotations and generalizes to unseen categories.
arXiv Detail & Related papers (2025-07-04T04:46:59Z) - InstanceGaussian: Appearance-Semantic Joint Gaussian Representation for 3D Instance-Level Perception [17.530797215534456]
3D scene understanding has become an essential area of research with applications in autonomous driving, robotics, and augmented reality.<n>We propose InstanceGaussian, a method that jointly learns appearance and semantic features while adaptively aggregating instances.<n>Our approach achieves state-of-the-art performance in category-agnostic, open-vocabulary 3D point-level segmentation.
arXiv Detail & Related papers (2024-11-28T16:08:36Z) - FocusTune: Tuning Visual Localization through Focus-Guided Sampling [61.79440120153917]
FocusTune is a focus-guided sampling technique to improve the performance of visual localization algorithms.
We demonstrate that FocusTune both improves or matches state-of-the-art performance whilst keeping ACE's appealing low storage and compute requirements.
This combination of high performance and low compute and storage requirements is particularly promising for applications in areas like mobile robotics and augmented reality.
arXiv Detail & Related papers (2023-11-06T04:58:47Z) - Quantity-Aware Coarse-to-Fine Correspondence for Image-to-Point Cloud
Registration [4.954184310509112]
Image-to-point cloud registration aims to determine the relative camera pose between an RGB image and a reference point cloud.
Matching individual points with pixels can be inherently ambiguous due to modality gaps.
We propose a framework to capture quantity-aware correspondences between local point sets and pixel patches.
arXiv Detail & Related papers (2023-07-14T03:55:54Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
Hyperspectral image (HSI) classification is challenging due to spatial variability caused by complex imaging conditions.
We propose a tri-spectral image generation pipeline that transforms HSI into high-quality tri-spectral images.
Our proposed method outperforms state-of-the-art methods for HSI classification.
arXiv Detail & Related papers (2023-04-19T18:32:52Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
We tackle the task of estimating the 3D orientation of previously-unseen objects from monocular images.
We follow a retrieval-based strategy and prevent the network from learning object-specific features.
Our experiments on the LineMOD, LineMOD-Occluded, and T-LESS datasets show that our method yields a significantly better generalization to unseen objects than previous works.
arXiv Detail & Related papers (2022-03-16T08:53:00Z) - Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting [11.64827192421785]
unsupervised representation learning is a promising direction to auto-extract features without human intervention.
This paper proposes a general unsupervised approach, named textbfConClu, to perform the learning of point-wise and global features.
arXiv Detail & Related papers (2022-02-05T12:54:17Z) - Re-rank Coarse Classification with Local Region Enhanced Features for
Fine-Grained Image Recognition [22.83821575990778]
We re-rank the TopN classification results by using the local region enhanced embedding features to improve the Top1 accuracy.
To learn more effective semantic global features, we design a multi-level loss over an automatically constructed hierarchical category structure.
Our method achieves state-of-the-art performance on three benchmarks: CUB-200-2011, Stanford Cars, and FGVC Aircraft.
arXiv Detail & Related papers (2021-02-19T11:30:25Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.