論文の概要: Making a Case for Federated Learning in the Internet of Vehicles and
Intelligent Transportation Systems
- arxiv url: http://arxiv.org/abs/2102.10142v1
- Date: Fri, 19 Feb 2021 20:07:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 14:42:40.300264
- Title: Making a Case for Federated Learning in the Internet of Vehicles and
Intelligent Transportation Systems
- Title(参考訳): 車両とインテリジェント交通システムのインターネットにおけるフェデレーション学習の事例作成
- Authors: Dimitrios Michael Manias, Abdallah Shami
- Abstract要約: 車両のインターネット(IoV)はインテリジェント交通システム(ITS)に変換されます。
これらの課題に対処するために,協調的分散知能技術である連合学習が提案されている。
多数のユースケースとメリットを備えたFederated Learningは、ITSの重要なイネーブラーであり、5Gおよびネットワークやアプリケーションを超えて広く実装される予定です。
- 参考スコア(独自算出の注目度): 6.699060157800401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the incoming introduction of 5G networks and the advancement in
technologies, such as Network Function Virtualization and Software Defined
Networking, new and emerging networking technologies and use cases are taking
shape. One such technology is the Internet of Vehicles (IoV), which describes
an interconnected system of vehicles and infrastructure. Coupled with recent
developments in artificial intelligence and machine learning, the IoV is
transformed into an Intelligent Transportation System (ITS). There are,
however, several operational considerations that hinder the adoption of ITS
systems, including scalability, high availability, and data privacy. To address
these challenges, Federated Learning, a collaborative and distributed
intelligence technique, is suggested. Through an ITS case study, the ability of
a federated model deployed on roadside infrastructure throughout the network to
recover from faults by leveraging group intelligence while reducing recovery
time and restoring acceptable system performance is highlighted. With a
multitude of use cases and benefits, Federated Learning is a key enabler for
ITS and is poised to achieve widespread implementation in 5G and beyond
networks and applications.
- Abstract(参考訳): 5Gネットワークの導入や、ネットワーク機能仮想化やソフトウェア定義ネットワークなどの技術の進歩に伴い、新しい、新しいネットワーク技術やユースケースが形成されています。
そのような技術の1つは、車両とインフラストラクチャの相互接続システムを記述する車両のインターネット(IoV)です。
人工知能と機械学習の最近の発展と相まって、IoVはインテリジェントトランスポーテーションシステム(ITS)に変換されます。
しかしながら、スケーラビリティ、高可用性、データプライバシなど、ITSシステムの採用を妨げる運用上の考慮事項がいくつかある。
これらの課題に対処するために,協調的分散知能技術である連合学習が提案されている。
ITSのケーススタディでは,グループインテリジェンスを活用しながら復旧時間を短縮し,システム性能を回復することで,ネットワーク全体の道路インフラストラクチャに展開するフェデレーションモデルが障害から回復する能力を強調した。
多数のユースケースとメリットを備えたFederated Learningは、ITSの重要なイネーブラーであり、5Gおよびネットワークやアプリケーションを超えて広く実装される予定です。
関連論文リスト
- Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
本稿では,エッジインテリジェンス(EI)と社会学習(SL)の統合に関する文献レビューの結果について述べる。
SLは、エージェントの協調能力と集団知性を増幅することを目的とした、社会的原則と行動に基づく学習パラダイムである。
ソーシャル化アーキテクチャ、ソーシャル化トレーニング、ソーシャル化推論の3つの統合コンポーネントについて詳しく検討し、その強みと弱点を分析した。
論文 参考訳(メタデータ) (2024-04-20T11:07:29Z) - Federated Learning in Intelligent Transportation Systems: Recent
Applications and Open Problems [30.511443961960147]
分散機械学習技術として、フェデレーション・ラーニング(FL)はその優れたプライバシー保護特性のために広く注目を集めている。
FL for ITSの最近の展開を包括的に調査する。
我々は、さまざまなシナリオにおける既存のFLのデプロイメントをレビューし、オブジェクト認識、トラフィック管理、サービス提供シナリオにおける特定の潜在的な問題について議論する。
論文 参考訳(メタデータ) (2023-09-20T03:39:30Z) - Enabling Intelligent Vehicular Networks Through Distributed Learning in
the Non-Terrestrial Networks 6G Vision [0.5461938536945721]
6G対応のインテリジェントトランスポーテーションシステム(ITS)は、先進的なインテリジェントサービスとアプリケーションで従来の交通ネットワークを再定義する。
これらの技術は、レイテンシ、エネルギー効率、ユーザデータセキュリティの厳しい要件を課している。
本稿では,資源制約型車両シナリオのための共同空地ネットワークにおいて,FSTL(Federated Split Transfer Learning)の概念を導入する。
論文 参考訳(メタデータ) (2023-09-07T22:18:21Z) - Optimization Design for Federated Learning in Heterogeneous 6G Networks [27.273745760946962]
フェデレーテッド・ラーニング(FL)は、6GネットワークでユビキタスAIを実現するための重要な実現手段として期待されている。
6Gネットワークにおける有効かつ効率的なFL実装には、いくつかのシステムおよび統計的不均一性の課題がある。
本稿では,これらの課題に効果的に対処できる最適化手法について検討する。
論文 参考訳(メタデータ) (2023-03-15T02:18:21Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Introduction to the Artificial Intelligence that can be applied to the
Network Automation Journey [68.8204255655161]
Intent-Based Networking - Concepts and Definitions"ドキュメントには、NetDevOpsに関わる可能性のあるエコシステムのさまざまな部分について記述されている。
認識、生成、翻訳、精巧な機能には、アルゴリズムを実装するための新しい方法が必要だ。
論文 参考訳(メタデータ) (2022-04-02T08:12:08Z) - AI-Empowered Data Offloading in MEC-Enabled IoV Networks [40.75165195026413]
本稿では、信頼性、セキュリティ、エネルギー管理、サービス販売者利益の4つの主要な問題に基づいて分類された、データオフロードプロセスの一部としてAIを使用する研究を調査する。
MEC対応のIoVネットワークでデータをオフロードするプロセスにおけるさまざまな課題として、高いモバイル環境における信頼性のオフロード、同一ネットワーク内のユーザに対するセキュリティ、ネットワークへの不活性化を防ぐためのエネルギ管理などがある。
論文 参考訳(メタデータ) (2022-03-31T09:31:53Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。