論文の概要: Optimization Design for Federated Learning in Heterogeneous 6G Networks
- arxiv url: http://arxiv.org/abs/2303.08322v1
- Date: Wed, 15 Mar 2023 02:18:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 14:54:54.637612
- Title: Optimization Design for Federated Learning in Heterogeneous 6G Networks
- Title(参考訳): 不均一6Gネットワークにおけるフェデレーション学習の最適化設計
- Authors: Bing Luo, Xiaomin Ouyang, Peng Sun, Pengchao Han, Ningning Ding,
Jianwei Huang
- Abstract要約: フェデレーテッド・ラーニング(FL)は、6GネットワークでユビキタスAIを実現するための重要な実現手段として期待されている。
6Gネットワークにおける有効かつ効率的なFL実装には、いくつかのシステムおよび統計的不均一性の課題がある。
本稿では,これらの課題に効果的に対処できる最適化手法について検討する。
- 参考スコア(独自算出の注目度): 27.273745760946962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of 5G networks, billions of smart Internet of
Things (IoT) devices along with an enormous amount of data are generated at the
network edge. While still at an early age, it is expected that the evolving 6G
network will adopt advanced artificial intelligence (AI) technologies to
collect, transmit, and learn this valuable data for innovative applications and
intelligent services. However, traditional machine learning (ML) approaches
require centralizing the training data in the data center or cloud, raising
serious user-privacy concerns. Federated learning, as an emerging distributed
AI paradigm with privacy-preserving nature, is anticipated to be a key enabler
for achieving ubiquitous AI in 6G networks. However, there are several system
and statistical heterogeneity challenges for effective and efficient FL
implementation in 6G networks. In this article, we investigate the optimization
approaches that can effectively address the challenging heterogeneity issues
from three aspects: incentive mechanism design, network resource management,
and personalized model optimization. We also present some open problems and
promising directions for future research.
- Abstract(参考訳): 5gネットワークの急速な進歩により、数十億ものiot(smart internet of things, スマートモノのインターネット)デバイスと膨大な量のデータがネットワークエッジで生成される。
初期段階でも、6Gネットワークは高度な人工知能(AI)技術を採用して、革新的なアプリケーションやインテリジェントなサービスのために、この貴重なデータを収集、送信、学習することが期待されている。
しかし、従来の機械学習(ML)アプローチでは、データセンタやクラウド内のトレーニングデータを集中化する必要がある。
6GネットワークでユビキタスAIを実現する上で,フェデレーション学習は,プライバシ保護という性質を持った,新たな分散AIパラダイムとして期待されている。
しかし、6Gネットワークにおける有効かつ効率的なFL実装には、いくつかのシステムおよび統計的不均一性の課題がある。
本稿では,インセンティブ機構設計,ネットワークリソース管理,パーソナライズされたモデル最適化という3つの側面から,異質性の課題を効果的に解決できる最適化手法について検討する。
また,今後の研究に向けた課題と今後の方向性について述べる。
関連論文リスト
- In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile
Networks [61.416494781759326]
In-situモデルダウンロードは、ネットワーク内のAIライブラリからダウンロードすることで、デバイス上のAIモデルを透過的でリアルタイムに置き換えることを目的としている。
提示されたフレームワークの重要なコンポーネントは、ダウンロードされたモデルを深さレベル、パラメータレベル、ビットレベルで動的に圧縮する一連のテクニックである。
我々は,3層(エッジ,ローカル,中央)AIライブラリのキー機能を備えた,インサイトモデルダウンロードのデプロイ用にカスタマイズされた6Gネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T13:41:15Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6Gはワイヤレスの進化を「コネクテッドモノ」から「コネクテッドインテリジェンス」に変革する
ディープラーニングとビッグデータ分析に基づくAIシステムは、膨大な計算と通信資源を必要とする。
エッジAIは、センサー、通信、計算、インテリジェンスをシームレスに統合する6Gの破壊的技術として際立っている。
論文 参考訳(メタデータ) (2021-11-24T11:47:16Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - True-data Testbed for 5G/B5G Intelligent Network [46.09035008165811]
私たちは5G/B5Gインテリジェントネットワーク(TTIN)のための世界初の真のデータテストベッドを構築します
TTINは5G/B5Gオンサイト実験ネットワーク、データ取得とデータウェアハウス、AIエンジンとネットワーク最適化で構成されている。
本稿では,TTINのシステムアーキテクチャとモジュール設計について詳述する。
論文 参考訳(メタデータ) (2020-11-26T06:42:36Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
6Gとフェデレーション学習の統合を導入し、6Gのための潜在的なフェデレーション学習アプリケーションを提供する。
6G通信の文脈において,重要な技術的課題,それに対応するフェデレーション学習手法,および今後のフェデレーション学習研究のためのオープンな課題について述べる。
論文 参考訳(メタデータ) (2020-06-04T15:17:19Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。