Persistence Homology for Link Prediction: An Interactive View
- URL: http://arxiv.org/abs/2102.10255v1
- Date: Sat, 20 Feb 2021 04:33:59 GMT
- Title: Persistence Homology for Link Prediction: An Interactive View
- Authors: Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Chao Chen
- Abstract summary: Link prediction is an important learning task for graph-structured data.
We propose a novel topological approach to characterize interactions between two nodes.
We also propose a graph neural network method that outperforms state-of-the-arts on different benchmarks.
- Score: 15.068319518015421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction is an important learning task for graph-structured data. In
this paper, we propose a novel topological approach to characterize
interactions between two nodes. Our topological feature, based on the extended
persistence homology, encodes rich structural information regarding the
multi-hop paths connecting nodes. Based on this feature, we propose a graph
neural network method that outperforms state-of-the-arts on different
benchmarks. As another contribution, we propose a novel algorithm to more
efficiently compute the extended persistent diagrams for graphs. This algorithm
can be generally applied to accelerate many other topological methods for graph
learning tasks.
Related papers
- Learning to Identify Graphs from Node Trajectories in Multi-Robot
Networks [15.36505600407192]
We propose a learning-based approach that efficiently uncovers graph topologies with global convergence guarantees.
We demonstrate the effectiveness of our approach in identifying graphs in multi-robot formation and flocking tasks.
arXiv Detail & Related papers (2023-07-10T07:09:12Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis.
This paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP.
Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
arXiv Detail & Related papers (2022-12-31T10:07:19Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Neural Approximation of Extended Persistent Homology on Graphs [23.606830663387775]
We propose a novel learning method to compute extended persistence diagrams on graphs.
Our method is also efficient; on large and dense graphs, we accelerate the computation by nearly 100 times.
arXiv Detail & Related papers (2022-01-28T10:54:45Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.