論文の概要: Meta-Learning Dynamics Forecasting Using Task Inference
- arxiv url: http://arxiv.org/abs/2102.10271v1
- Date: Sat, 20 Feb 2021 06:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 14:53:20.771015
- Title: Meta-Learning Dynamics Forecasting Using Task Inference
- Title(参考訳): タスク推論を用いたメタラーニングダイナミクス予測
- Authors: Rui Wang, Robin Walters, Rose Yu
- Abstract要約: ヘテロジニアス領域をまたいで一般化可能なモデルベースメタ学習手法DyAdを提案する。
我々のモデルは、乱流と実世界の海洋データ予測のタスクにおいて、様々な最先端のアプローチより優れています。
- 参考スコア(独自算出の注目度): 14.991206559453383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current deep learning models for dynamics forecasting struggle with
generalization. They can only forecast in a specific domain and fail when
applied to systems with different parameters, external forces, or boundary
conditions. We propose a model-based meta-learning method called DyAd which can
generalize across heterogeneous domains by partitioning them into separate
subdomains, each with a different task. DyAd has two parts: a prediction
network which learns the shared dynamics of the entire domain, and an encoder
that infers the parameters of the task. The encoder adapts the prediction
network during inference time using adaptive instance normalization and a new
layer, AdaPad, specifically designed for boundary conditions. The encoder can
also use any weak supervision signals that can help distinguish different
tasks, allowing the incorporation of additional domain knowledge. Our model
outperforms a variety of state-of-the-art approaches on both turbulent flow and
real-world ocean data forecasting tasks.
- Abstract(参考訳): 一般化と闘うダイナミクス予測のための現在のディープラーニングモデル。
それらは特定のドメイン内でのみ予測でき、異なるパラメータ、外部力、境界条件を持つシステムに適用されると失敗する。
本稿では,異なるタスクを持つ異なるサブドメインに分割することで,異種ドメインをまたがる汎用化を可能にする,dyadと呼ばれるモデルベースのメタ学習手法を提案する。
DyAdには、ドメイン全体の共有ダイナミクスを学習する予測ネットワークと、タスクのパラメータを推論するエンコーダの2つの部分がある。
エンコーダは、適応インスタンス正規化と境界条件専用に設計された新しい層であるadapadを用いて、推論時間中に予測ネットワークを適応させる。
エンコーダはまた、異なるタスクを区別し、追加のドメイン知識を組み込むのに役立つ弱い監視信号を使用することもできる。
我々のモデルは、乱流と実世界の海洋データ予測のタスクにおいて、様々な最先端のアプローチより優れています。
関連論文リスト
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
斬新なクラスとドメインの両方が存在するようなオープンワールドシナリオでは、理想的なセグメンテーションモデルは安全のために異常なクラスを検出する必要がある。
既存の方法はドメインレベルとセマンティックレベルの分散シフトを区別するのに苦労することが多い。
論文 参考訳(メタデータ) (2024-11-06T11:03:02Z) - Self-Supervised Learning for Covariance Estimation [3.04585143845864]
推論時に局所的に適用されるニューラルネットワークをグローバルに学習することを提案する。
アーキテクチャは、一般的な注目メカニズムに基づいている。
基礎モデルとして事前訓練し、レーダーやハイパースペクトル画像の適応目標検出など、様々な下流タスクに再利用することができる。
論文 参考訳(メタデータ) (2024-03-13T16:16:20Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
合成意味混合は、ポイントクラウドセグメンテーションのための最初の教師なし領域適応技術である。
本稿では、ソースドメイン(例えば合成)からの点雲とターゲットドメイン(例えば実世界)からの点雲を同時に処理できる2分岐対称ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-28T14:43:36Z) - Single Domain Dynamic Generalization for Iris Presentation Attack
Detection [41.126916126040655]
アイリスプレゼンテーションの一般化はドメイン内の設定では大きな成功を収めたが、目に見えないドメインでは容易に分解できる。
本稿では,ドメイン不変性とドメイン固有性を利用した単一ドメイン動的一般化(SDDG)フレームワークを提案する。
提案手法は有効であり,LivDet-Iris 2017データセットの最先端性を上回っている。
論文 参考訳(メタデータ) (2023-05-22T07:54:13Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Dynamic Domain Generalization [10.252262302724608]
我々は、動的ドメイン一般化(DDG)と呼ばれる新しいDG変種を開発し、モデルが異なるドメインからのデータに適応するために、ネットワークパラメータをツイストすることを学ぶ。
具体的には、メタ調整器を利用して、異なるドメインの異なるデータに対して静的モデルに基づいてネットワークパラメータをツイストする。
このように、静的モデルはドメイン共有機能を学ぶために最適化され、メタ調整器はドメイン固有の機能を学ぶために設計されている。
論文 参考訳(メタデータ) (2022-05-27T11:29:03Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
我々は、ドメイン固有性とドメイン不変性の両方が、re-idモデルの一般化能力の向上に不可欠であると主張する。
これら2種類の情報を同時にモデル化するために,2ストリーム適応学習 (TAL) を命名した。
我々のフレームワークは、単一ソースとマルチソースの両方のドメイン一般化タスクに適用できる。
論文 参考訳(メタデータ) (2021-11-29T01:27:42Z) - Domain Generalization via Gradient Surgery [5.38147998080533]
現実のアプリケーションでは、マシンラーニングモデルは、トレーニングとテストドメイン間のデータ分散の変化があるシナリオに直面します。
本研究では,ドメインシフトのシナリオに現れる矛盾する勾配を特徴付けるとともに,新たな勾配合意戦略を考案する。
論文 参考訳(メタデータ) (2021-08-03T16:49:25Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。