End-to-end neural network approach to 3D reservoir simulation and
adaptation
- URL: http://arxiv.org/abs/2102.10304v1
- Date: Sat, 20 Feb 2021 10:03:45 GMT
- Title: End-to-end neural network approach to 3D reservoir simulation and
adaptation
- Authors: E. Illarionov, P. Temirchev, D. Voloskov, R. Kostoev, M. Simonov, D.
Pissarenko, D. Orlov and D. Koroteev
- Abstract summary: We present a unified approach to reservoir simulation and adaptation problems.
A single neural network model allows a forward pass from initial geological parameters of the 3D reservoir model.
We demonstrate that the suggested approach provides accurate reservoir simulation and history matching with a benefit of several orders of magnitude simulation speed-up.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reservoir simulation and adaptation (also known as history matching) are
typically considered as separate problems. While a set of models are aimed at
the solution of the forward simulation problem assuming all initial geological
parameters are known, the other set of models adjust geological parameters
under the fixed forward simulation model to fit production data. This results
in many difficulties for both reservoir engineers and developers of new
efficient computation schemes. We present a unified approach to reservoir
simulation and adaptation problems. A single neural network model allows a
forward pass from initial geological parameters of the 3D reservoir model
through dynamic state variables to well's production rates and backward
gradient propagation to any model inputs and variables. The model fitting and
geological parameters adaptation both become the optimization problem over
specific parts of the same neural network model. Standard gradient-based
optimization schemes can be used to find the optimal solution. Using real-world
oilfield model and historical production rates we demonstrate that the
suggested approach provides accurate reservoir simulation and history matching
with a benefit of several orders of magnitude simulation speed-up.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - Surrogate Model for Geological CO2 Storage and Its Use in Hierarchical
MCMC History Matching [0.0]
We extend the recently introduced recurrent R-U-Net surrogate model to treat geomodel realizations drawn from a wide range of geological scenarios.
We show that, using observed data from monitoring wells in synthetic true' models, geological uncertainty is reduced substantially.
arXiv Detail & Related papers (2023-08-11T18:29:28Z) - A stable deep adversarial learning approach for geological facies
generation [32.97208255533144]
Deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models.
This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally meandering channels in underground volumes.
arXiv Detail & Related papers (2023-05-12T14:21:14Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Deep learning-based surrogate model for 3-D patient-specific
computational fluid dynamics [6.905238157628892]
It is notoriously challenging to parameterize the input space of arbitrarily complex 3-D geometries.
We propose a novel deep learning surrogate modeling solution to address these challenges and enable rapid hemodynamic predictions.
arXiv Detail & Related papers (2022-04-11T17:34:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Convex Latent Effect Logit Model via Sparse and Low-rank Decomposition [2.1915057426589746]
We propose a convexparametric convexparametric formulation for learning logistic regression model (logit) with latent heterogeneous effect on sub-population.
Despite its popularity, the mixed logit approach for learning individual heterogeneity has several downsides.
arXiv Detail & Related papers (2021-08-22T22:23:39Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
We are replacing the numerical code by a computationally cheaper projection based surrogate model.
The model is able to approximate the electric fields at a given time without computing all preceding electric fields as required by numerical methods.
This model has shown a good quality reconstruction in a problem of perturbation of data within a narrow range of simulation parameters and can be used for input data of large size.
arXiv Detail & Related papers (2021-06-01T08:46:04Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.