論文の概要: Large-width functional asymptotics for deep Gaussian neural networks
- arxiv url: http://arxiv.org/abs/2102.10307v1
- Date: Sat, 20 Feb 2021 10:14:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 15:09:59.190795
- Title: Large-width functional asymptotics for deep Gaussian neural networks
- Title(参考訳): 深いガウスニューラルネットのための大幅機能的漸近
- Authors: Daniele Bracale, Stefano Favaro, Sandra Fortini, Stefano Peluchetti
- Abstract要約: 重みとバイアスが独立であり、ガウス分布に従って同一に分布する完全連結フィードフォワード深層ニューラルネットワークを考える。
この結果は、無限に広い深層ニューラルネットワークとプロセス間の相互作用に関する最近の理論的研究に寄与する。
- 参考スコア(独自算出の注目度): 2.7561479348365734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider fully connected feed-forward deep neural networks
where weights and biases are independent and identically distributed according
to Gaussian distributions. Extending previous results (Matthews et al.,
2018a;b; Yang, 2019) we adopt a function-space perspective, i.e. we look at
neural networks as infinite-dimensional random elements on the input space
$\mathbb{R}^I$. Under suitable assumptions on the activation function we show
that: i) a network defines a continuous Gaussian process on the input space
$\mathbb{R}^I$; ii) a network with re-scaled weights converges weakly to a
continuous Gaussian process in the large-width limit; iii) the limiting
Gaussian process has almost surely locally $\gamma$-H\"older continuous paths,
for $0 < \gamma <1$. Our results contribute to recent theoretical studies on
the interplay between infinitely wide deep neural networks and Gaussian
processes by establishing weak convergence in function-space with respect to a
stronger metric.
- Abstract(参考訳): 本稿では,重みとバイアスが独立かつガウス分布に等しく分布する完全連結型フィードフォワード深層ニューラルネットワークについて検討する。
以前の結果(Matthews et al., 2018a;b; Yang, 2019)を拡張するために、関数空間の視点を採用している。
ニューラルネットワークを入力空間 $\mathbb{r}^i$ 上の無限次元ランダム要素として捉える。
i) 入力空間上の連続ガウス過程を定義する: $\mathbb{R}^I$; ii) 再スケールした重みを持つネットワークは、大幅極限における連続ガウス過程に弱収束する; iii) 制限ガウス過程は、ほぼ確実に局所的に$\gamma$-H\"older連続経路を持ち、$0 < \gamma <1$である。
この結果は, 関数空間における弱収束性を確立することにより, 無限大の深層ニューラルネットワークとガウス過程の相互作用に関する最近の理論的研究に寄与する。
関連論文リスト
- Wide Deep Neural Networks with Gaussian Weights are Very Close to
Gaussian Processes [1.0878040851638]
ネットワーク出力と対応するガウス近似との距離は、ネットワークの幅と逆向きにスケールし、中心極限定理によって提案されるネーブよりも高速な収束を示すことを示す。
また、(有限)トレーニングセットで評価されたネットワーク出力の有界リプシッツ関数である場合、ネットワークの正確な後部分布の理論的近似を求めるために境界を適用した。
論文 参考訳(メタデータ) (2023-12-18T22:29:40Z) - Quantitative CLTs in Deep Neural Networks [12.845031126178593]
ランダムなガウス重みとバイアスを持つ完全連結ニューラルネットワークの分布について検討する。
我々は、大まかではあるが有限の$n$および任意の固定されたネットワーク深さで有効な正規近似の量的境界を得る。
我々の境界は、それまでの文献で利用できたものよりも、ネットワーク幅に依存しているという点で厳格に強い。
論文 参考訳(メタデータ) (2023-07-12T11:35:37Z) - Wide neural networks: From non-gaussian random fields at initialization
to the NTK geometry of training [0.0]
パラメータが$n=1014$を超える人工ニューラルネットワークの応用の最近の進歩は、そのようなネットワークの大きな$n$の振る舞いを研究することが極めて重要である。
広義のニューラルネットワークを研究するほとんどの研究は、そのようなネットワークの無限幅$nから+infty$制限に焦点を当てている。
この研究では、それらの振る舞いを大まかに研究するが、有限$n$である。
論文 参考訳(メタデータ) (2023-04-06T21:34:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
ニューラルネットワークのニューラルカーネル(NTK)に重みのランダムプルーニングが及ぼす影響について検討する。
特に、この研究は、完全に接続されたニューラルネットワークとそのランダムに切断されたバージョン間のNTKの等価性を確立する。
論文 参考訳(メタデータ) (2022-03-27T15:22:19Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Deep neural network approximation of analytic functions [91.3755431537592]
ニューラルネットワークの空間に エントロピーバウンド 片方向の線形活性化関数を持つ
我々は、ペナル化深部ニューラルネットワーク推定器の予測誤差に対するオラクルの不等式を導出する。
論文 参考訳(メタデータ) (2021-04-05T18:02:04Z) - Infinitely Wide Tensor Networks as Gaussian Process [1.7894377200944511]
本稿では、無限に広いネットワークとガウス過程の等価性を示す。
我々は無限極限テンソルネットワークに対応するガウス過程を実装し、これらのモデルのサンプルパスをプロットする。
論文 参考訳(メタデータ) (2021-01-07T02:29:15Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
カーネルメソッドは、完全に接続された有限幅ネットワークより優れている。
中心とアンサンブルの有限ネットワークは後続のばらつきを減らした。
重みの減衰と大きな学習率の使用は、有限ネットワークと無限ネットワークの対応を破る。
論文 参考訳(メタデータ) (2020-07-31T01:57:47Z) - Stable behaviour of infinitely wide deep neural networks [8.000374471991247]
我々は、重みとバイアスが独立して均等に分布する、完全に接続されたフィードフォワードディープニューラルネットワーク(NN)について検討する。
NNの無限の幅制限は、重みに対する適切なスケーリングの下で、有限次元分布が安定分布である過程であることを示す。
論文 参考訳(メタデータ) (2020-03-01T04:07:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。