論文の概要: Everything is Relative: Understanding Fairness with Optimal Transport
- arxiv url: http://arxiv.org/abs/2102.10349v1
- Date: Sat, 20 Feb 2021 13:57:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 16:38:28.765289
- Title: Everything is Relative: Understanding Fairness with Optimal Transport
- Title(参考訳): すべてが相対的: 最適輸送による公平性を理解する
- Authors: Kweku Kwegyir-Aggrey, Rebecca Santorella, Sarah M. Brown
- Abstract要約: バイアスとその構造を解釈可能かつ定量に探索できる公平性への最適輸送ベースアプローチを提案する。
我々のフレームワークは、アルゴリズムによる差別のよく知られた例を復元し、他の指標が失敗したときの不公平さを検知し、レコメンデーションの機会を探ることができる。
- 参考スコア(独自算出の注目度): 1.160208922584163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To study discrimination in automated decision-making systems, scholars have
proposed several definitions of fairness, each expressing a different fair
ideal. These definitions require practitioners to make complex decisions
regarding which notion to employ and are often difficult to use in practice
since they make a binary judgement a system is fair or unfair instead of
explaining the structure of the detected unfairness. We present an optimal
transport-based approach to fairness that offers an interpretable and
quantifiable exploration of bias and its structure by comparing a pair of
outcomes to one another. In this work, we use the optimal transport map to
examine individual, subgroup, and group fairness. Our framework is able to
recover well known examples of algorithmic discrimination, detect unfairness
when other metrics fail, and explore recourse opportunities.
- Abstract(参考訳): 自動意思決定システムにおける差別を研究するために、学者は公正性の定義をいくつか提案し、それぞれが異なる公正な理想を表現している。
これらの定義は、検出された不公平の構造を説明するのではなく、システムが公平または不公平であるため、どの概念を採用するかについて複雑な決定を下す必要があり、実際には使用が困難であることが多い。
ペアの成果を互いに比較することにより,バイアスとその構造を解釈可能かつ定量に探索する,公平性に対する最適なトランスポートベースアプローチを提案する。
本研究では, 最適な輸送地図を用いて, 個人, サブグループ, グループ公平性を検討する。
我々のフレームワークは、アルゴリズムによる差別のよく知られた例を復元し、他の指標が失敗したときの不公平さを検知し、レコメンデーションの機会を探ることができる。
関連論文リスト
- Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
機械学習アプリケーションにおける差別の原因を明らかにするための包括的アプローチを提案する。
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated region。
これにより、各特徴がバイアスに影響を及ぼすかどうかを測定するために強制的公正性を使用する凝集系を導出することができる。
論文 参考訳(メタデータ) (2023-08-22T00:10:23Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
逆行訓練は、自然言語処理におけるバイアス緩和の一般的なアプローチである。
本稿では、よりリッチな特徴を生み出すために、ターゲットクラスをインプットとして利用する、対位訓練のための拡張判別器を提案する。
論文 参考訳(メタデータ) (2022-03-12T02:22:58Z) - A Systematic Approach to Group Fairness in Automated Decision Making [0.0]
本論文の目的は,データ科学者に対して,グループフェアネス指標の紹介を提供することである。
我々は、公正な言明をするために、社会デマログラフィーグループをどの感覚で比較するかを考えることでこれを行おうとする。
論文 参考訳(メタデータ) (2021-09-09T12:47:15Z) - Fairness Through Counterfactual Utilities [0.0]
Demographic Parity や Equal Opportunity のようなグループフェアネスの定義は、それらが分類問題に制限される基本的な決定確率について仮定する。
我々は、すべての機械学習環境に明確に拡張されたグループフェアネス定義の一般化セットを提供する。
論文 参考訳(メタデータ) (2021-08-11T16:51:27Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Metric-Free Individual Fairness with Cooperative Contextual Bandits [17.985752744098267]
グループフェアネスは、グループ内の一部の個人に対して不公平であるように、異なるグループが同様に扱われるべきである。
個々の公正性は、問題固有の類似度指標に依存するため、まだ検討されていない。
本研究では,メトリックフリーな個人フェアネスと協調的文脈帯域幅アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-13T03:10:35Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Machine learning fairness notions: Bridging the gap with real-world
applications [4.157415305926584]
フェアネスは、機械学習予測システムが特定の個人やサブ人口全体に対して差別しないことを保証する重要な要件として現れた。
本稿では,多くの事例とシナリオを通じて,公平性の概念間の微妙な関係について述べる。
論文 参考訳(メタデータ) (2020-06-30T13:01:06Z) - Two Simple Ways to Learn Individual Fairness Metrics from Data [47.6390279192406]
個人的公正はアルゴリズム的公正の直感的な定義であり、グループ的公正の欠点のいくつかに対処する。
多くのMLタスクに対して広く受け入れられている公正な基準が欠如していることが、個人の公正を広く採用する大きな障壁である。
学習した指標による公正なトレーニングが、性別や人種的偏見に影響を受けやすい3つの機械学習タスクの公平性を改善することを実証的に示す。
論文 参考訳(メタデータ) (2020-06-19T23:47:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。