論文の概要: GIST: Distributed Training for Large-Scale Graph Convolutional Networks
- arxiv url: http://arxiv.org/abs/2102.10424v1
- Date: Sat, 20 Feb 2021 19:25:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 07:55:18.561098
- Title: GIST: Distributed Training for Large-Scale Graph Convolutional Networks
- Title(参考訳): GIST:大規模グラフ畳み込みネットワークのための分散トレーニング
- Authors: Cameron R. Wolfe, Jingkang Yang, Arindam Chowdhury, Chen Dun, Artun
Bayer, Santiago Segarra, Anastasios Kyrillidis
- Abstract要約: GISTはハイブリッド層とグラフサンプリング手法であり、グローバルモデルをいくつかの小さなサブGCNに分割する。
この分散フレームワークはモデルのパフォーマンスを改善し、ウォールクロックのトレーニング時間を大幅に短縮します。
GISTは、グラフ機械学習とディープラーニングの既存のギャップを埋めることを目的として、大規模なGCN実験を可能にすることを目指している。
- 参考スコア(独自算出の注目度): 18.964079367668262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The graph convolutional network (GCN) is a go-to solution for machine
learning on graphs, but its training is notoriously difficult to scale in terms
of both the size of the graph and the number of model parameters. These
limitations are in stark contrast to the increasing scale (in data size and
model size) of experiments in deep learning research. In this work, we propose
GIST, a novel distributed approach that enables efficient training of wide
(overparameterized) GCNs on large graphs. GIST is a hybrid layer and graph
sampling method, which disjointly partitions the global model into several,
smaller sub-GCNs that are independently trained across multiple GPUs in
parallel. This distributed framework improves model performance and
significantly decreases wall-clock training time. GIST seeks to enable
large-scale GCN experimentation with the goal of bridging the existing gap in
scale between graph machine learning and deep learning.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、グラフ上の機械学習のためのゴーツーソリューションですが、そのトレーニングは、グラフのサイズとモデルパラメータの数の両方の観点からスケールするのが非常に困難です。
これらの制限は、ディープラーニング研究における実験のスケール(データサイズとモデルサイズ)の増加とは対照的です。
本研究では,大規模グラフ上で広帯域(過パラメータ化)GCNの効率的なトレーニングを可能にする,新しい分散手法であるGISTを提案する。
GISTはハイブリッド層とグラフサンプリング手法であり、グローバルモデルを複数の小さなサブGCNに分割し、複数のGPU間で独立して並列に訓練する。
この分散フレームワークはモデルのパフォーマンスを改善し、ウォールクロックのトレーニング時間を大幅に短縮します。
GISTは、グラフ機械学習とディープラーニングの既存のギャップを埋めることを目的として、大規模なGCN実験を可能にすることを目指している。
関連論文リスト
- Slicing Input Features to Accelerate Deep Learning: A Case Study with Graph Neural Networks [0.24578723416255746]
本稿では,機能スライスされた大規模グラフ学習手法であるSliceGCNを紹介する。
これは、ミニバッチトレーニングに典型的な精度損失を回避し、GPU間通信を減らすことを目的としている。
6つのノード分類データセットで実験を行い、興味深い分析結果を得た。
論文 参考訳(メタデータ) (2024-08-21T10:18:41Z) - Do We Really Need Graph Convolution During Training? Light Post-Training Graph-ODE for Efficient Recommendation [34.93725892725111]
トレーニングレコメンデータシステム(RecSys)におけるグラフ畳み込みネットワーク(GCNs)は、絶え間なく懸念されてきた。
本稿では,学習段階におけるグラフ畳み込みの必要性を批判的に考察する。
光後学習グラフ正規分方程式(LightGODE)という革新的な方法を導入する。
論文 参考訳(メタデータ) (2024-07-26T17:59:32Z) - Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNは、グラフを学習するニューラルネットワークの強力なファミリーである。
GNNのスケーリングは、肥大化または拡大によって、不健康な勾配、過度なスムースメント、情報のスカッシングといった問題に悩まされる。
本稿では,現在のGNNの深層化や拡張ではなく,GNNに適したモデルスープをデータ中心の視点で表現することを提案する。
論文 参考訳(メタデータ) (2023-06-18T03:33:46Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
グラフニューラルネットワーク(GNN)は、グラフデータからの学習に広く応用されている。
GNNの一般化能力を強化するため、グラフ強化のような技術を用いて、トレーニンググラフ構造を増強することが慣例となっている。
本研究では,GNNにMixture-of-Experts(MoE)の概念を導入する。
論文 参考訳(メタデータ) (2023-04-06T01:09:36Z) - Scalable Graph Convolutional Network Training on Distributed-Memory
Systems [5.169989177779801]
グラフ畳み込みネットワーク(GCN)はグラフの深層学習に広く利用されている。
グラフ上の畳み込み操作は不規則なメモリアクセスパターンを誘導するので、GCNトレーニングのためのメモリと通信効率の並列アルゴリズムを設計することはユニークな課題である。
本稿では,大規模プロセッサ数にスケールする並列トレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-09T17:51:13Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
リレーショナルグラフ畳み込みネットワーク(R-GCN)のトレーニングは、グラフのサイズに合わない。
本研究では,グラフの要約手法を用いてグラフを圧縮する実験を行った。
AIFB, MUTAG, AMデータセットについて妥当な結果を得た。
論文 参考訳(メタデータ) (2022-03-05T00:28:43Z) - GraphTheta: A Distributed Graph Neural Network Learning System With
Flexible Training Strategy [5.466414428765544]
新しい分散グラフ学習システムGraphThetaを紹介します。
複数のトレーニング戦略をサポートし、大規模グラフ上で効率的でスケーラブルな学習を可能にします。
この仕事は、文学における10億規模のネットワーク上で実施された最大のエッジアトリビュートGNN学習タスクを表します。
論文 参考訳(メタデータ) (2021-04-21T14:51:33Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
グラフ畳み込みネットワーク(GCN)は、最先端のグラフベースの表現学習モデルである。
本稿では、GCNベースの協調フィルタリング(CF)ベースのレコメンダシステム(RS)について再検討する。
単純なグラフ畳み込みネットワークの理論と整合して,非線形性を取り除くことで推奨性能が向上することを示す。
本稿では,ユーザ・イテム相互作用モデリングを用いたCF用に特別に設計された残差ネットワーク構造を提案する。
論文 参考訳(メタデータ) (2020-01-28T04:41:25Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。