論文の概要: Three dimensional unique identifier based automated georeferencing and
coregistration of point clouds in underground environment
- arxiv url: http://arxiv.org/abs/2102.10731v1
- Date: Mon, 22 Feb 2021 01:47:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 03:29:45.442425
- Title: Three dimensional unique identifier based automated georeferencing and
coregistration of point clouds in underground environment
- Title(参考訳): 地中における点雲の3次元一意的識別子に基づく自動測地図作成
- Authors: Sarvesh Kumar Singh, Bikram Pratap Banerjee and Simit Raval
- Abstract要約: 本研究は, 地下・室内レーザースキャンにおける実用的課題を克服することを目的とする。
レーザースキャンにおける3次元一意識別子(3duids)と3次元登録(3dreg)ワークフローを自動かつ一意的に識別する手法を開発した。
開発された3DUIDは、道路プロファイル抽出、ガイド付き自動化、センサーキャリブレーション、定期的な調査および変形監視の基準目標に使用できます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatially and geometrically accurate laser scans are essential in modelling
infrastructure for applications in civil, mining and transportation. Monitoring
of underground or indoor environments such as mines or tunnels is challenging
due to unavailability of a sensor positioning framework, complicated
structurally symmetric layouts, repetitive features and occlusions. Current
practices largely include a manual selection of discernable reference points
for georeferencing and coregistration purpose. This study aims at overcoming
these practical challenges in underground or indoor laser scanning. The
developed approach involves automatically and uniquely identifiable three
dimensional unique identifiers (3DUIDs) in laser scans, and a 3D registration
(3DReG) workflow. Field testing of the method in an underground tunnel has been
found accurate, effective and efficient. Additionally, a method for
automatically extracting roadway tunnel profile has been exhibited. The
developed 3DUID can be used in roadway profile extraction, guided automation,
sensor calibration, reference targets for routine survey and deformation
monitoring.
- Abstract(参考訳): 空間的および幾何学的に正確なレーザースキャンは、土木、鉱業、輸送のモデリングインフラストラクチャーに不可欠である。
地雷やトンネルなどの地下環境や屋内環境のモニタリングは、センサー測位フレームワーク、複雑な構造対称レイアウト、反復的な特徴、および閉塞性のために困難である。
現在のプラクティスには、ジオ参照と登録目的のために識別可能な参照点を手動で選択することが含まれる。
本研究は,地下・室内レーザースキャンにおけるこれらの課題を克服することを目的とする。
開発されたアプローチでは、レーザースキャンにおける3次元ユニークな識別子(3DUID)と、3D登録(3DReG)ワークフローが自動で一意に識別される。
地下トンネルの現場試験では, 精度, 有効性, 効率性が確認できた。
さらに、道路トンネルプロファイルを自動的に抽出する方法が示されています。
開発された3DUIDは、道路プロファイル抽出、ガイド付き自動化、センサーキャリブレーション、定期的な調査および変形監視の基準目標に使用できます。
関連論文リスト
- The Oxford Spires Dataset: Benchmarking Large-Scale LiDAR-Visual Localisation, Reconstruction and Radiance Field Methods [10.265865092323041]
本稿では,オックスフォードの有名なランドマーク周辺で収集された大規模マルチモーダルデータセットを紹介する。
また、ローカライゼーション、再構築、新規ビュー合成を含むタスクのベンチマークも作成する。
我々のデータセットとベンチマークは、放射場法とSLAMシステムのより良い統合を容易にすることを意図している。
論文 参考訳(メタデータ) (2024-11-15T19:43:24Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - FRAME: Fast and Robust Autonomous 3D point cloud Map-merging for
Egocentric multi-robot exploration [2.433860819518925]
本稿では,エゴセントリックなヘテロジニアスマルチロボット探索のための3次元クラウドマップ統合フレームワークを提案する。
提案した新しいソリューションは、最先端の場所認識学習ディスクリプタを利用して、フレームワークのメインパイプラインを通じて、高速で堅牢なリージョン重複推定を提供する。
提案手法の有効性を, 地下環境における複数フィールドマルチロボット探査計画に基づいて実験的に評価した。
論文 参考訳(メタデータ) (2023-01-22T21:59:38Z) - A vision-based autonomous UAV inspection framework for unknown tunnel
construction sites with dynamic obstacles [7.340017786387768]
本稿では,動的トンネル環境のための視覚に基づくUAV検査フレームワークを提案する。
我々のフレームワークには、動的障害を同時に追跡し、静的障害を表現できる新しい動的マップモジュールが含まれています。
実際のトンネルでの飛行実験は, トンネル掘削面を自律的に検査できることを示すものである。
論文 参考訳(メタデータ) (2023-01-20T04:42:30Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multiは、最初のマルチロボットシステムであり、不正なインターループとイントラロボットループの閉鎖を識別し拒否することができる。
我々は、フォトリアリスティックシミュレーション、SLAMベンチマークデータセット、地上ロボットを用いて収集された屋外データセットの挑戦において、Kimera-Multiを実証した。
論文 参考訳(メタデータ) (2021-06-28T03:56:40Z) - Pedestrian Detection in 3D Point Clouds using Deep Neural Networks [2.6763498831034034]
密集した3dポイントクラウド内の歩行者を検出するためのpointnet++アーキテクチャを提案する。
目的は、歩行者検出システムにおける幾何学的情報のみの潜在的な貢献を検討することである。
また,rgb画像から歩行者および非ペデストリアンラベルを3dドメインに転送するセミオートマチックラベルシステムを提案する。
論文 参考訳(メタデータ) (2021-05-03T20:12:11Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - It's All Around You: Range-Guided Cylindrical Network for 3D Object
Detection [4.518012967046983]
本研究は,360度深度スキャナーによって生成された3次元データを解析するための新しい手法を提案する。
距離誘導畳み込みの概念を導入し,エゴ車と物体のスケールからの距離で受容場を適応させる。
我々のネットワークは、現在の最先端アーキテクチャに匹敵するnuScenesチャレンジにおいて、強力な結果を示す。
論文 参考訳(メタデータ) (2020-12-05T21:02:18Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
LIDARデータに対する高速な1段3次元物体検出法を提案する。
我々の手法の中核となる新規性は高速かつシングルパスアーキテクチャであり、どちらも3次元の物体を検出し、それらの形状を推定する。
提案手法は,ScanNetシーンのオブジェクト検出で5%,オープンデータセットでは3.4%の精度で結果が得られた。
論文 参考訳(メタデータ) (2020-04-02T17:48:50Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
私たちは3Dポイントクラウドに3D完全畳み込みネットワークを活用しています。
本稿では,3次元点ごとに検出スコアと記述特徴の両方を密に予測する,新しい,実践的な学習機構を提案する。
本手法は,屋内と屋外の両方のシナリオで最先端の手法を実現する。
論文 参考訳(メタデータ) (2020-03-06T12:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。