論文の概要: Improved Context-Based Offline Meta-RL with Attention and Contrastive
Learning
- arxiv url: http://arxiv.org/abs/2102.10774v1
- Date: Mon, 22 Feb 2021 05:05:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 15:18:44.735261
- Title: Improved Context-Based Offline Meta-RL with Attention and Contrastive
Learning
- Title(参考訳): 意識とコントラスト学習によるコンテキストベースオフラインメタRLの改良
- Authors: Lanqing Li, Yuanhao Huang, Dijun Luo
- Abstract要約: SOTA OMRLアルゴリズムの1つであるFOCALを、タスク内注意メカニズムとタスク間コントラスト学習目標を組み込むことで改善します。
理論解析と実験を行い、エンドツーエンドおよびモデルフリーの優れた性能、効率、堅牢性を実証します。
- 参考スコア(独自算出の注目度): 1.3106063755117399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-learning for offline reinforcement learning (OMRL) is an understudied
problem with tremendous potential impact by enabling RL algorithms in many
real-world applications. A popular solution to the problem is to infer task
identity as augmented state using a context-based encoder, for which efficient
learning of task representations remains an open challenge. In this work, we
improve upon one of the SOTA OMRL algorithms, FOCAL, by incorporating
intra-task attention mechanism and inter-task contrastive learning objectives
for more effective task inference and learning of control. Theoretical analysis
and experiments are presented to demonstrate the superior performance,
efficiency and robustness of our end-to-end and model free method compared to
prior algorithms across multiple meta-RL benchmarks.
- Abstract(参考訳): オフライン強化学習(OMRL)のためのメタラーニングは、多くの実世界のアプリケーションでRLアルゴリズムを有効にすることで、潜在的に大きな影響を持つ。
この問題の一般的な解決策は、タスク表現の効率的な学習が依然としてオープンな課題であるコンテキストベースのエンコーダを用いて、タスクアイデンティティを拡張状態として推論することである。
本研究では,より効果的なタスク推論と制御学習のために,タスク内注目機構とタスク間コントラスト学習目標を組み込むことにより,SOTA OMRLアルゴリズムの1つであるFOOCALを改善した。
複数のメタRLベンチマークにおける先行アルゴリズムと比較して、エンドツーエンドおよびモデルフリー手法の優れた性能、効率、堅牢性を示すため、理論的解析および実験を行った。
関連論文リスト
- Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
本稿では, エージェントが十分に多様なタスクセットで訓練された場合, 筋電図探索設計による一般的なポリシー共有アルゴリズムは, サンプル効率がよいことを示す。
我々の知る限りでは、これはMTRLの「探索的利益」の初めての理論的実証である。
論文 参考訳(メタデータ) (2024-03-03T22:57:44Z) - Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning [48.79569442193824]
我々は,COMRLアルゴリズムが,タスク変数$M$と,その潜在表現$Z$の相互情報目的を,様々な近似境界を実装して最適化していることを示す。
本研究は,COMRL法の情報理論基盤を構築し,強化学習の文脈におけるタスク表現学習の理解を深める。
論文 参考訳(メタデータ) (2024-02-04T09:58:42Z) - M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation [0.7564784873669823]
マルチモーダルコントラスト非教師強化学習(M2CURL)を提案する。
提案手法は,効率的な表現を学習し,RLアルゴリズムの高速収束に寄与する,新しいマルチモーダル自己教師学習技術を用いている。
Tactile Gym 2シミュレータ上でのM2CURLの評価を行い、異なる操作タスクにおける学習効率を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-01-30T14:09:35Z) - On Task-Relevant Loss Functions in Meta-Reinforcement Learning and
Online LQR [9.355903533901023]
本稿では,タスク指向方式でシステムや環境のモデルを学習する,サンプル効率のメタRLアルゴリズムを提案する。
メタRLの標準的なモデルベースアプローチとは対照的に,本手法では,環境の決定クリティカルな部分を迅速に捉えるために,値情報を利用する。
論文 参考訳(メタデータ) (2023-12-09T04:52:28Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
我々は,メタRLと呼ばれるプロセスにおいて,機械学習問題自体として,より優れたRLアルゴリズムを開発した。
本稿では,タスク分布の存在と各タスクに利用可能な学習予算に基づいて,高レベルでメタRL研究をクラスタ化する方法について議論する。
RL実践者のための標準ツールボックスにメタRLを組み込むことの道程について,オープンな問題を提示することによって,結論を下す。
論文 参考訳(メタデータ) (2023-01-19T12:01:41Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
対照的な自己指導型学習は、(深層)強化学習(RL)の実践にうまく統合されている
我々は,低ランク遷移を伴うマルコフ決定過程(MDP)とマルコフゲーム(MG)のクラスにおいて,コントラスト学習によってRLをどのように強化できるかを検討する。
オンライン環境下では,MDPやMGのオンラインRLアルゴリズムと対照的な損失を生かした,新しい高信頼境界(UCB)型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T17:29:08Z) - Meta Reinforcement Learning with Successor Feature Based Context [51.35452583759734]
本稿では,既存のメタRLアルゴリズムと競合する性能を実現するメタRL手法を提案する。
本手法は,複数のタスクに対して同時に高品質なポリシーを学習するだけでなく,短時間のトレーニングで新しいタスクに迅速に適応できる。
論文 参考訳(メタデータ) (2022-07-29T14:52:47Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
本稿では,課題学習の目的を課題(あるいは課題の集合)の目的にシフトさせるメタラーニング手法を提案する。
我々のモデルであるREIN-2は、RLフレームワーク内で構成されたメタ学習スキームであり、その目的は、他のRLエージェントの作り方を学ぶメタRLエージェントを開発することである。
従来の最先端のDeep RLアルゴリズムと比較して、実験結果は、人気のあるOpenAI Gym環境において、我々のモデルの顕著な性能を示している。
論文 参考訳(メタデータ) (2021-10-11T10:13:49Z) - A Workflow for Offline Model-Free Robotic Reinforcement Learning [117.07743713715291]
オフライン強化学習(RL)は、オンラインインタラクションを伴わずに、事前の経験のみを活用することによって、学習制御ポリシを可能にする。
本研究では,教師付き学習問題に対して,比較的よく理解されたオフラインRLと類似した実践的ワークフローを開発する。
オンラインチューニングを伴わない効果的なポリシー作成におけるこのワークフローの有効性を実証する。
論文 参考訳(メタデータ) (2021-09-22T16:03:29Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
本稿では, オフラインメタ強化学習(OMRL)問題について検討する。これは, 強化学習(RL)アルゴリズムが未知のタスクに迅速に適応できるようにするパラダイムである。
この問題はまだ完全には理解されていないが、2つの大きな課題に対処する必要がある。
我々は、いくつかの単純な設計選択が、最近のアプローチよりも大幅に改善できることを示す分析と洞察を提供する。
論文 参考訳(メタデータ) (2020-10-02T17:13:39Z) - Learning Context-aware Task Reasoning for Efficient Meta-reinforcement
Learning [29.125234093368732]
本稿では,新しいタスクの学習において,人間レベルの効率を実現するためのメタRL戦略を提案する。
本稿では,メタRL問題をタスク探索,タスク推論,タスク充足という3つのサブタスクに分解する。
提案アルゴリズムは,タスク推論の探索を効果的に行い,トレーニングとテストの双方においてサンプル効率を向上し,メタオーバーフィッティング問題を緩和する。
論文 参考訳(メタデータ) (2020-03-03T07:38:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。