Weighted Graph Nodes Clustering via Gumbel Softmax
- URL: http://arxiv.org/abs/2102.10775v1
- Date: Mon, 22 Feb 2021 05:05:35 GMT
- Title: Weighted Graph Nodes Clustering via Gumbel Softmax
- Authors: Deepak Bhaskar Acharya, Huaming Zhang
- Abstract summary: We present some ongoing research results on graph clustering algorithms for clustering weighted graph datasets.
We name our algorithm as Weighted Graph Node Clustering via Gumbel Softmax (WGCGS)
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Graph is a ubiquitous data structure in data science that is widely applied
in social networks, knowledge representation graphs, recommendation systems,
etc. When given a graph dataset consisting of one graph or more graphs, where
the graphs are weighted in general, the first step is often to find clusters in
the graphs. In this paper, we present some ongoing research results on graph
clustering algorithms for clustering weighted graph datasets, which we name as
Weighted Graph Node Clustering via Gumbel Softmax (WGCGS for short). We apply
WGCGS on the Karate club weighted network dataset. Our experiments demonstrate
that WGCGS can efficiently and effectively find clusters in the Karate club
weighted network dataset. Our algorithm's effectiveness is demonstrated by (1)
comparing the clustering result obtained from our algorithm and the given
labels of the dataset; and (2) comparing various metrics between our clustering
algorithm and other state-of-the-art graph clustering algorithms.
Related papers
- DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
We propose a novel method, DGCluster, which primarily optimize the modularity objective using graph neural networks and scales linearly with the graph size.
We extensively test DGCluster on several real-world datasets of varying sizes, across multiple popular cluster quality metrics.
Our approach consistently outperforms the state-of-the-art methods, demonstrating significant performance gains in almost all settings.
arXiv Detail & Related papers (2023-12-20T01:43:55Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information
Maximization Network [31.38584638254226]
We study the problem of partitioning a set of graphs into different groups such that the graphs in the same group are similar while the graphs in different groups are dissimilar.
To solve the problem, we propose a novel method called Deep Graph-Level Clustering (DGLC)
Our DGLC achieves graph-level representation learning and graph-level clustering in an end-to-end manner.
arXiv Detail & Related papers (2023-02-05T12:28:08Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
Many real-world systems can be represented as graphs where the different entities in the system are presented by nodes and their interactions by edges.
An important task in studying large datasets with graphical structure is graph clustering.
We introduce a graph signal processing based approach, where we learn the parameters of Finite Impulse Response (FIR) and Autoregressive Moving Average (ARMA) graph filters optimized for clustering.
arXiv Detail & Related papers (2022-11-09T01:49:23Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
This paper studies the problem of graph-level clustering, which is a novel yet challenging task.
We propose a general graph-level clustering framework named Graph-Level Contrastive Clustering (GLCC)
Experiments on a range of well-known datasets demonstrate the superiority of our proposed GLCC over competitive baselines.
arXiv Detail & Related papers (2022-10-21T11:08:10Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
We show how to convert a non-graph dataset into a graph by introducing the generative graph model, which is used to build graph convolution networks (GCNs)
A bipartite graph constructed by anchors is updated dynamically to exploit the high-level information behind data.
We theoretically prove that the simple update will lead to degeneration and a specific strategy is accordingly designed.
arXiv Detail & Related papers (2021-11-12T07:08:13Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph
Clustering [37.68977275752782]
noisy edges and nodes in the graph may make the clustering results worse.
We propose a novel dual graph embedding network(DGEN) to improve the robustness of the graph clustering to the noisy nodes and edges.
Experiments on three benchmark graph datasets demonstrate the superiority compared with several state-of-the-art algorithms.
arXiv Detail & Related papers (2021-04-30T06:51:51Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.