論文の概要: Nonparametric adaptive active learning under local smoothness condition
- arxiv url: http://arxiv.org/abs/2102.11077v1
- Date: Mon, 22 Feb 2021 14:47:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 09:39:28.144833
- Title: Nonparametric adaptive active learning under local smoothness condition
- Title(参考訳): 局所平滑化条件下での非パラメトリック適応型アクティブ学習
- Authors: Boris Ndjia Njike, Xavier Siebert
- Abstract要約: 本稿では,最小仮定の非パラメトリック環境における適応型アクティブラーニングの問題に対処する。
従来知られていたアルゴリズムよりも,より一般的な仮定の下で有効な新しいアルゴリズムを提案する。
我々のアルゴリズムは最小収束率を達成し、最もよく知られた非適応アルゴリズムと同等に機能する。
- 参考スコア(独自算出の注目度): 0.76146285961466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning is typically used to label data, when the labeling process is
expensive. Several active learning algorithms have been theoretically proved to
perform better than their passive counterpart. However, these algorithms rely
on some assumptions, which themselves contain some specific parameters. This
paper adresses the problem of adaptive active learning in a nonparametric
setting with minimal assumptions. We present a novel algorithm that is valid
under more general assumptions than the previously known algorithms, and that
can moreover adapt to the parameters used in these assumptions. This allows us
to work with a larger class of distributions, thereby avoiding to exclude
important densities like gaussians. Our algorithm achieves a minimax rate of
convergence, and therefore performs almost as well as the best known
non-adaptive algorithms.
- Abstract(参考訳): アクティブラーニングは通常、ラベル付けプロセスが高価である場合、データのラベル付けに使用される。
いくつかのアクティブな学習アルゴリズムは、理論上、受動的学習アルゴリズムよりも優れていることが証明されている。
しかし、これらのアルゴリズムは特定のパラメータを含むいくつかの仮定に依存している。
本稿では,最小仮定の非パラメトリック環境における適応型アクティブラーニングの問題に対処する。
本稿では,従来のアルゴリズムよりも一般的な仮定の下で有効であり,これらの仮定で用いられるパラメータに適応できる新しいアルゴリズムを提案する。
これにより、より大きなクラスの分布を扱うことができ、ガウジアンのような重要な密度を排除することを避けます。
我々のアルゴリズムは最小収束率を達成し、最もよく知られた非適応アルゴリズムと同等に機能する。
関連論文リスト
- Unsupervised Learning of Initialization in Deep Neural Networks via
Maximum Mean Discrepancy [74.34895342081407]
本稿では,入力データに対する優れた初期化を求めるための教師なしアルゴリズムを提案する。
まず、パラメータ空間における各パラメータ構成が、d-way分類の特定の下流タスクに対応することに気付く。
次に、学習の成功は、初期パラメータの近傍で下流タスクがいかに多様であるかに直接関連していると推測する。
論文 参考訳(メタデータ) (2023-02-08T23:23:28Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
本稿では,これらのミニマックス問題の解法として,適応最小最適化アルゴリズム(AdaFGDA)を提案する。
運動量に基づく還元および局所SGD技術を構築し、様々な適応学習率を柔軟に組み込む。
論文 参考訳(メタデータ) (2022-11-14T12:32:18Z) - Algorithms that Approximate Data Removal: New Results and Limitations [2.6905021039717987]
本研究では,経験的リスク最小化を用いて学習した機械学習モデルからユーザデータを削除することの問題点について検討する。
計算とメモリ効率を両立させるオンラインアンラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-09-25T17:20:33Z) - Efficient Active Learning with Abstention [12.315392649501101]
計算効率のよい能動学習アルゴリズムを開発した。
このアルゴリズムの重要な特徴は、アクティブな学習でしばしば見られる望ましくない「ノイズ探索」行動を避けることである。
論文 参考訳(メタデータ) (2022-03-31T18:34:57Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Smoothed Online Learning is as Easy as Statistical Learning [77.00766067963195]
この設定では、最初のオラクル効率、非回帰アルゴリズムを提供する。
古典的な設定で関数クラスが学習可能な場合、文脈的包帯に対するオラクル効率のよい非回帰アルゴリズムが存在することを示す。
論文 参考訳(メタデータ) (2022-02-09T19:22:34Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Learning to Actively Learn: A Robust Approach [22.75298609290053]
本研究では,アクティブラーニングや純粋探索型マルチアームバンディットといった適応データ収集タスクのアルゴリズム設計手法を提案する。
我々の適応アルゴリズムは、情報理論の下界から導かれる問題の同値クラスに対する逆学習によって学習される。
我々は,訓練手順の安定性と有効性を正当化するための合成実験を行い,実データから導出される課題について評価する。
論文 参考訳(メタデータ) (2020-10-29T06:48:22Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z) - Fase-AL -- Adaptation of Fast Adaptive Stacking of Ensembles for
Supporting Active Learning [0.0]
本研究は,Active Learning を用いて非ラベルのインスタンスで分類モデルを誘導する FASE-AL アルゴリズムを提案する。
このアルゴリズムは、正しく分類されたインスタンスの割合で有望な結果を得る。
論文 参考訳(メタデータ) (2020-01-30T17:25:47Z) - K-NN active learning under local smoothness assumption [1.0152838128195467]
我々は受動的学習よりも収束率の高い能動的学習アルゴリズムを設計する。
従来のアクティブな学習アルゴリズムとは異なり、インスタンス空間の限界分布に依存する滑らかな仮定を用いる。
論文 参考訳(メタデータ) (2020-01-17T10:44:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。