論文の概要: Algorithms that Approximate Data Removal: New Results and Limitations
- arxiv url: http://arxiv.org/abs/2209.12269v1
- Date: Sun, 25 Sep 2022 17:20:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 14:45:01.735979
- Title: Algorithms that Approximate Data Removal: New Results and Limitations
- Title(参考訳): データ削除を近似するアルゴリズム:新しい結果と限界
- Authors: Vinith M. Suriyakumar, Ashia C. Wilson
- Abstract要約: 本研究では,経験的リスク最小化を用いて学習した機械学習モデルからユーザデータを削除することの問題点について検討する。
計算とメモリ効率を両立させるオンラインアンラーニングアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 2.6905021039717987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of deleting user data from machine learning models
trained using empirical risk minimization. Our focus is on learning algorithms
which return the empirical risk minimizer and approximate unlearning algorithms
that comply with deletion requests that come streaming minibatches. Leveraging
the infintesimal jacknife, we develop an online unlearning algorithm that is
both computationally and memory efficient. Unlike prior memory efficient
unlearning algorithms, we target models that minimize objectives with
non-smooth regularizers, such as the commonly used $\ell_1$, elastic net, or
nuclear norm penalties. We also provide generalization, deletion capacity, and
unlearning guarantees that are consistent with state of the art methods. Across
a variety of benchmark datasets, our algorithm empirically improves upon the
runtime of prior methods while maintaining the same memory requirements and
test accuracy. Finally, we open a new direction of inquiry by proving that all
approximate unlearning algorithms introduced so far fail to unlearn in problem
settings where common hyperparameter tuning methods, such as cross-validation,
have been used to select models.
- Abstract(参考訳): 経験的リスク最小化を用いて学習した機械学習モデルからユーザデータを削除する問題について検討する。
私たちの焦点は、ストリーミングミニバッチの削除要求に対応する経験的リスク最小化アルゴリズムと、ほぼ非学習アルゴリズムを返す学習アルゴリズムにあります。
infintesimal jacknifeを活用することで,計算効率とメモリ効率の両立したオンラインアンラーニングアルゴリズムを開発した。
従来のメモリ効率のよいアンラーニングアルゴリズムとは異なり、一般的に使用される$\ell_1$、elastic net、核規範ペナルティのような非スムース正規化器で目的を最小化するモデルを対象としている。
また、アートメソッドの状態と整合した一般化、削除能力、未学習の保証も提供します。
様々なベンチマークデータセットにおいて、我々のアルゴリズムは、同じメモリ要件とテスト精度を維持しながら、事前メソッドの実行時を経験的に改善する。
最後に,これまでに導入した近似的アンラーニングアルゴリズムが,クロスバリデーションなどの一般的なハイパーパラメータチューニング手法がモデル選択に使用されている問題設定において解き放たれないことを証明することにより,新たな調査の方向性を開く。
関連論文リスト
- Meta-Learning from Learning Curves for Budget-Limited Algorithm Selection [11.409496019407067]
予算制限のシナリオでは、アルゴリズム候補を慎重に選択し、それを訓練するための予算を割り当てることが不可欠である。
本稿では,エージェントが十分に訓練されるまで待たずに,最も有望なアルゴリズムを学習する過程において,エージェントが選択しなければならない新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-10T08:09:58Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
我々は、中間的監督に訴えることなく、入出力ペアからのみニューラルネットワーク推論を学ぶことに集中する。
我々は、アルゴリズムの軌跡にアクセスできることなく、モデルの中間計算を正規化できる自己教師対象を構築する。
CLRSic Algorithmic Reasoning Benchmarkのタスクにおいて,提案手法はトラジェクトリを教師する手法と競合することを示す。
論文 参考訳(メタデータ) (2023-06-23T09:57:44Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - Implicit Parameter-free Online Learning with Truncated Linear Models [51.71216912089413]
パラメータフリーアルゴリズムは、設定された学習率を必要としないオンライン学習アルゴリズムである。
そこで我々は,「単純」なフレーバーを持つ新しい更新によって,切り離された線形モデルを活用できる新しいパラメータフリーアルゴリズムを提案する。
後悔の新たな分解に基づいて、新しい更新は効率的で、各ステップで1つの勾配しか必要とせず、切り捨てられたモデルの最小値をオーバーシュートすることはない。
論文 参考訳(メタデータ) (2022-03-19T13:39:49Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Optimization for Supervised Machine Learning: Randomized Algorithms for
Data and Parameters [10.279748604797911]
機械学習とデータサイエンスの主な問題は、最適化問題として日常的にモデル化され、最適化アルゴリズムによって解決される。
データ量の増加と、これらの不条件最適化タスクを定式化するために使用される統計モデルのサイズと複雑さにより、これらの課題に対処できる新しい効率的なアルゴリズムが必要である。
この論文では,これらの課題をそれぞれ異なる方法で処理する。ビッグデータ問題に効率的に対処するために,各イテレーションでトレーニングデータの小さなランダムサブセットのみを検査する新しい手法を開発する。
大きなモデル問題に対処するために、イテレーション毎に更新されるメソッドを開発します。
論文 参考訳(メタデータ) (2020-08-26T21:15:18Z) - Learning and Planning in Average-Reward Markov Decision Processes [15.586087060535398]
我々は,平均回帰MDPの学習と計画アルゴリズムを導入する。
全てのアルゴリズムは,平均報酬の推定値を更新する際に,従来の誤差よりも時間差誤差を用いている。
論文 参考訳(メタデータ) (2020-06-29T19:03:24Z) - Provably Robust Metric Learning [98.50580215125142]
既存のメトリクス学習アルゴリズムは、ユークリッド距離よりもロバストなメトリクスをもたらすことを示す。
対向摂動に対して頑健なマハラノビス距離を求めるための新しい距離学習アルゴリズムを提案する。
実験結果から,提案アルゴリズムは証明済みの堅牢な誤りと経験的堅牢な誤りの両方を改善した。
論文 参考訳(メタデータ) (2020-06-12T09:17:08Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
我々は、よく知られたOFULアルゴリズムの正規化バージョンを実装するバンディットアルゴリズムのクラスを考える。
我々は,タスク数の増加とタスク分散の分散が小さくなると,タスクを個別に学習する上で,我々の戦略が大きな優位性を持つことを理論的および実験的に示す。
論文 参考訳(メタデータ) (2020-05-18T08:41:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。