論文の概要: Adversarial Shape Learning for Building Extraction in VHR Remote Sensing
Images
- arxiv url: http://arxiv.org/abs/2102.11262v2
- Date: Thu, 25 Feb 2021 13:58:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-26 11:35:53.687581
- Title: Adversarial Shape Learning for Building Extraction in VHR Remote Sensing
Images
- Title(参考訳): VHRリモートセンシング画像における建物抽出のための対比形状学習
- Authors: Lei Ding, Hao Tang, Yahui Liu, Yilei Shi and Lorenzo Bruzzone
- Abstract要約: 建物の形状パターンをモデル化する対比形状学習ネットワーク(ASLNet)を提案する。
実験の結果,提案したASLNetは画素ベース精度とオブジェクトベース測定の両方を大きなマージンで改善することがわかった。
- 参考スコア(独自算出の注目度): 18.650642666164252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building extraction in VHR RSIs remains to be a challenging task due to
occlusion and boundary ambiguity problems. Although conventional convolutional
neural networks (CNNs) based methods are capable of exploiting local texture
and context information, they fail to capture the shape patterns of buildings,
which is a necessary constraint in the human recognition. In this context, we
propose an adversarial shape learning network (ASLNet) to model the building
shape patterns, thus improving the accuracy of building segmentation. In the
proposed ASLNet, we introduce the adversarial learning strategy to explicitly
model the shape constraints, as well as a CNN shape regularizer to strengthen
the embedding of shape features. To assess the geometric accuracy of building
segmentation results, we further introduced several object-based assessment
metrics. Experiments on two open benchmark datasets show that the proposed
ASLNet improves both the pixel-based accuracy and the object-based measurements
by a large margin. The code is available at: https://github.com/ggsDing/ASLNet
- Abstract(参考訳): VHR RSIにおけるビルディング抽出は, 閉塞性や境界曖昧性の問題により, 依然として困難な課題である。
従来の畳み込みニューラルネットワーク(CNN)ベースの手法は、局所的なテクスチャやコンテキスト情報を利用することができるが、人間の認識に必要な制約である建物の形状パターンを捉えることができない。
そこで本研究では,建物の形状パターンをモデル化するための対比形状学習ネットワーク(ASLNet)を提案し,建物のセグメンテーションの精度を向上させる。
提案するASLNetでは,形状制約を明示的にモデル化するための対角学習戦略と,形状特徴の埋め込みを強化するためのCNN形状正規化器を導入する。
さらに,建物分割結果の幾何的精度を評価するために,複数のオブジェクトベース評価指標を導入した。
2つのオープンベンチマークデータセットの実験は、提案されたASLNetがピクセルベースの精度とオブジェクトベースの測定の両方を大きなマージンで改善することを示しています。
https://github.com/ggsding/aslnet
関連論文リスト
- Deep Loss Convexification for Learning Iterative Models [11.36644967267829]
点雲登録のための反復的最近点(ICP)のような反復的手法は、しばしば悪い局所最適性に悩まされる。
我々は,各地真実の周囲に凸景観を形成する学習を提案する。
論文 参考訳(メタデータ) (2024-11-16T01:13:04Z) - Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models [1.3030624795284795]
非剛点クラウドマッチングのための学習ベースのフレームワークを提案する。
重要な洞察は、大きな視覚モデル(LVM)から派生した意味的特徴を統合することである。
本フレームワークは,局所的な地形間の自己相似性から生じるあいまいさに対処するために,意味的特徴に含まれる構造情報を効果的に活用する。
論文 参考訳(メタデータ) (2024-08-16T07:02:19Z) - Shape Anchor Guided Holistic Indoor Scene Understanding [9.463220988312218]
本研究では, 室内環境の堅牢な理解のための形状アンカー案内学習戦略(AncLearn)を提案する。
AncLearnは、インスタンス表面を動的に(i)アンミックスノイズとターゲット関連の機能に適合するアンカーを生成し、検出段階で信頼性の高い提案を提供する。
我々は,高品質なセマンティックシーンモデルを生成するために,AncLearnを再構成検出学習システム(AncRec)に組み込む。
論文 参考訳(メタデータ) (2023-09-20T08:30:20Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - A Convolutional Neural Network Approach to the Classification of
Engineering Models [0.9558392439655015]
本稿では,畳み込みニューラルネットワーク(CNN)を用いたCADモデルの深層学習手法を提案する。
ResNetにインスパイアされたCADNETの残余ネットワークアーキテクチャを使うことが提案されている。
提案したネットワークアーキテクチャを用いたLFDベースのCNNアプローチと勾配向上によりCADNET上での最良の分類精度が得られた。
論文 参考訳(メタデータ) (2021-07-14T04:33:50Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
3次元画像処理のためのGDANet(Geometry-Disentangled Attention Network)を提案する。
GDANetは、点雲を3Dオブジェクトの輪郭と平らな部分に切り離し、それぞれ鋭い変化成分と穏やかな変化成分で表される。
3Dオブジェクトの分類とセグメンテーションベンチマークの実験は、GDANetがより少ないパラメータで最先端の処理を実現していることを示している。
論文 参考訳(メタデータ) (2020-12-20T13:35:00Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
ポイントクラウドは3次元幾何学情報符号化に採用されている主要なデータ構造である。
形状指向型メッセージパッシング方式であるShapeConvを提案する。
論文 参考訳(メタデータ) (2020-04-20T16:11:51Z) - Learning 3D Human Shape and Pose from Dense Body Parts [117.46290013548533]
本研究では,3次元の人体形状を学習し,身体部分の密接な対応からポーズをとるために,分解・集約ネットワーク(DaNet)を提案する。
ローカルストリームからのメッセージは集約され、回転ベースのポーズの堅牢な予測が強化される。
提案手法は,Human3.6M,UP3D,COCO,3DPWを含む屋内および実世界のデータセットで検証される。
論文 参考訳(メタデータ) (2019-12-31T15:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。