論文の概要: Neuroscience-Inspired Algorithms for the Predictive Maintenance of
Manufacturing Systems
- arxiv url: http://arxiv.org/abs/2102.11450v1
- Date: Tue, 23 Feb 2021 01:31:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 13:48:04.082585
- Title: Neuroscience-Inspired Algorithms for the Predictive Maintenance of
Manufacturing Systems
- Title(参考訳): 製造システムの予測的保守のための神経科学に基づくアルゴリズム
- Authors: Arnav V. Malawade, Nathan D. Costa, Deepan Muthirayan, Pramod P.
Khargonekar, Mohammad A. Al Faruque
- Abstract要約: 階層型時間記憶(HTM)を用いた予測保守のためのオンラインリアルタイム異常検出手法を提案する。
ヒトの新皮質に触発されて、htmは継続的に学習し、適応し、雑音に頑健である。
このアプローチは平均スコア64.71に達し、最先端のディープラーニング(49.38)と統計的手法(61.06)を上回っている。
- 参考スコア(独自算出の注目度): 0.24999074238880484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: If machine failures can be detected preemptively, then maintenance and
repairs can be performed more efficiently, reducing production costs. Many
machine learning techniques for performing early failure detection using
vibration data have been proposed; however, these methods are often power and
data-hungry, susceptible to noise, and require large amounts of data
preprocessing. Also, training is usually only performed once before inference,
so they do not learn and adapt as the machine ages. Thus, we propose a method
of performing online, real-time anomaly detection for predictive maintenance
using Hierarchical Temporal Memory (HTM). Inspired by the human neocortex, HTMs
learn and adapt continuously and are robust to noise. Using the Numenta Anomaly
Benchmark, we empirically demonstrate that our approach outperforms
state-of-the-art algorithms at preemptively detecting real-world cases of
bearing failures and simulated 3D printer failures. Our approach achieves an
average score of 64.71, surpassing state-of-the-art deep-learning (49.38) and
statistical (61.06) methods.
- Abstract(参考訳): 機械故障を事前に検出できれば、メンテナンスや修理をより効率的に行うことができ、生産コストを低減できる。
振動データを用いた早期故障検出のための機械学習手法が数多く提案されているが、これらの手法はしばしば電力とデータ格納性があり、ノイズに影響を受けやすく、大量のデータ前処理を必要とする。
また、トレーニングは通常、推論の前に1回だけ行われるので、機械時代の学習や適応は行わない。
そこで我々は階層型時空間メモリ(htm)を用いた予測保守のためのオンラインリアルタイム異常検出手法を提案する。
ヒトの新皮質に触発されて、htmは継続的に学習し、適応し、雑音に頑健である。
Numenta Anomaly Benchmark を用いて,本手法は実世界のベアリング故障や3Dプリンタの故障を事前に検出し,最先端のアルゴリズムよりも優れていることを示す。
このアプローチは平均スコア64.71に達し、最先端のディープラーニング(49.38)と統計的手法(61.06)を上回っている。
関連論文リスト
- Machine Learning for predicting chaotic systems [0.0]
我々は、よく調整された単純な手法と、未調整のベースライン手法が、しばしば最先端のディープラーニングモデルより優れていることを示す。
これらの結果は、データ特性と利用可能な計算資源に対するマッチング予測手法の重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-07-29T16:34:47Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
本稿では,画像センサ異常検出におけるラベルレベルのノイズを初めて考察する。
本稿では,メモリベースの非教師付きAD手法であるSoftPatchを提案する。
既存の手法と比較して、SoftPatchは通常のデータの強力なモデリング能力を維持し、コアセットにおける過信問題を軽減する。
論文 参考訳(メタデータ) (2024-03-21T08:49:34Z) - A Self-Commissioning Edge Computing Method for Data-Driven Anomaly
Detection in Power Electronic Systems [0.0]
現場応用のための制御されたラボ環境でうまく機能する手法は、重大な課題を提示する。
オンライン機械学習は、この問題を克服するための強力なツールだが、トレーニングプロセスの安定性と予測可能性を保証する上で、さらなる課題がもたらされる。
この研究は、これらの欠点を最小限のメモリ使用量で軽減するエッジコンピューティング手法を提案する。
論文 参考訳(メタデータ) (2023-12-05T10:56:25Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Uncertainty aware anomaly detection to predict errant beam pulses in the
SNS accelerator [47.187609203210705]
本稿では、不確実性を考慮した機械学習手法、シームズニューラルネットワークモデルの適用について述べる。
接近する故障を予測することで、損傷が起こる前に加速器を止めることができる。
論文 参考訳(メタデータ) (2021-10-22T18:37:22Z) - Cloud Failure Prediction with Hierarchical Temporary Memory: An
Empirical Assessment [64.73243241568555]
Hierarchical Temporary Memory (HTM) は、新皮質の特徴にインスパイアされた教師なし学習アルゴリズムである。
本稿では,障害予測の文脈でHTMを評価する最初の体系的研究について述べる。
論文 参考訳(メタデータ) (2021-10-06T07:09:45Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
マシンからあらゆる種類の障害を学ぶのに十分なデータを集めることは不可能である。
健康状態のみのデータを用いてトレーニングされた新しいアルゴリズムを開発し、教師なしの異常検出を行った。
これらのアルゴリズムの開発における重要な問題は、異常検出性能に影響を与える信号のノイズである。
論文 参考訳(メタデータ) (2021-07-20T14:06:50Z) - Double-Adversarial Activation Anomaly Detection: Adversarial
Autoencoders are Anomaly Generators [0.0]
異常検出は、固有のクラス不均衡のため、機械学習アルゴリズムにとって難しいタスクである。
生成モデルに着想を得て,ニューラルネットワークの隠れ活性化の解析を行い,DA3Dと呼ばれる新しい教師なし異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-01-12T18:07:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。