論文の概要: Auto Tensor Singular Value Thresholding: A Non-Iterative and Rank-Free Framework for Tensor Denoising
- arxiv url: http://arxiv.org/abs/2505.06203v1
- Date: Fri, 09 May 2025 17:30:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.351792
- Title: Auto Tensor Singular Value Thresholding: A Non-Iterative and Rank-Free Framework for Tensor Denoising
- Title(参考訳): Auto Tensor Singular Value Thresholding: Tensor Denoisingのための非イテレーティブでランクなしのフレームワーク
- Authors: Hiroki Hasegawa, Yukihiko Okada,
- Abstract要約: 実世界のデータセットの次元性の増大は、データ構造と精度を維持するための従来の行列ベースの手法を制限する。
これらの制限を回避するために,テンソルデータに対する新しい低ランク近似法を提案する。
本手法は, 統計的に定位した特異値しきい値を用いて, 重要な成分の自動抽出を可能にする。
- 参考スコア(独自算出の注目度): 2.002741592555996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern data-driven tasks such as classification, optimization, and forecasting, mitigating the effects of intrinsic noise is crucial for improving predictive accuracy. While numerous denoising techniques have been developed, the rising dimensionality of real-world datasets limits conventional matrix-based methods in preserving data structure and accuracy. This challenge has led to increasing interest in tensor-based approaches, which naturally capture multi-way data relationships. However, classical tensor decomposition methods (e.g., HOSVD, HOOI) typically require pre-specified ranks and iterative optimization, making them computationally expensive and less practical. In this work, we propose a novel low-rank approximation method for tensor data that avoids these limitations. Our approach applies statistically grounded singular value thresholding to mode-wise matricizations, enabling automatic extraction of significant components without requiring prior rank specification or iterative refinement. Experiments on synthetic and real-world tensors show that our method consistently outperforms existing techniques in terms of estimation accuracy and computational efficiency, especially in noisy high-dimensional settings.
- Abstract(参考訳): 分類、最適化、予測といった現代のデータ駆動型タスクでは、本質的なノイズの影響を緩和することが予測精度の向上に不可欠である。
多数の denoising 技術が開発されているが、実世界のデータセットの次元の増大は、データ構造と精度の保存において、従来の行列ベースの手法を制限している。
この課題はテンソルベースのアプローチへの関心を高め、マルチウェイデータ関係を自然に捉えている。
しかし、古典的なテンソル分解法(例えば、HOSVD、HOOI)は、通常、事前に指定されたランクと反復的な最適化を必要とし、計算的に高価で実用的ではない。
本研究では,これらの制限を回避するテンソルデータに対する新しい低ランク近似法を提案する。
提案手法では,事前のランク指定や反復的精錬を必要とせず,重要な成分の自動抽出が可能となる。
合成および実世界のテンソルの実験により,提案手法は推定精度と計算効率,特にノイズの多い高次元設定において,既存の手法より一貫して優れていた。
関連論文リスト
- Outlier-aware Tensor Robust Principal Component Analysis with Self-guided Data Augmentation [21.981038455329013]
適応重み付けを用いた自己誘導型データ拡張手法を提案する。
本研究では,最先端手法と比較して精度と計算効率の両面での改善を示す。
論文 参考訳(メタデータ) (2025-04-25T13:03:35Z) - Triply Laplacian Scale Mixture Modeling for Seismic Data Noise Suppression [51.87076090814921]
ポーラシティに基づくテンソルリカバリ法は, 地震データノイズを抑制する大きな可能性を示している。
本研究では, 3次元ラプラシアンスケール混合(TLSM)による地震波の抑制手法を提案する。
論文 参考訳(メタデータ) (2025-02-20T08:28:01Z) - Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
ユーザレベルの差分プライベート凸最適化(DP-SCO)は、マシンラーニングアプリケーションにおけるユーザのプライバシ保護の重要性から、大きな注目を集めている。
微分プライベート勾配勾配(DP-SGD)に基づくような現在の手法は、しばしば高雑音蓄積と準最適利用に苦しむ。
これらの課題を克服するために、ロバストな統計、特に中央値とトリミング平均を利用する新しい線形時間アルゴリズムを導入する。
論文 参考訳(メタデータ) (2025-02-13T02:05:45Z) - Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions [1.9116784879310031]
本稿では, ノイズ発生過程とノイズ発生過程の両方において, 時間均質な構造を実現する新しい生成拡散モデルを提案する。
モデルの主な特徴は、ターゲットデータへの適応性であり、事前訓練された無条件生成モデルを使用して、様々な下流タスクを可能にする。
論文 参考訳(メタデータ) (2025-01-31T18:23:27Z) - Privacy without Noisy Gradients: Slicing Mechanism for Generative Model Training [10.229653770070202]
差分プライバシ(DP)を持つ生成モデルを訓練するには、通常、勾配更新にノイズを注入するか、判別器の訓練手順を適用する必要がある。
プライベートデータのランダムな低次元投影にノイズを注入するスライシングプライバシ機構について考察する。
本稿では,この分散性を考慮したカーネルベース推定器を提案し,対角訓練の必要性を回避した。
論文 参考訳(メタデータ) (2024-10-25T19:32:58Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
雑音ラベル付きモデルを用いたトレーニングは安価で驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
トレーニングデータセットにノイズの多いラベルが存在することは、機械学習モデルのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、事前学習されたモデルの事前知識を頑健かつ効率的に伝達するTURNと呼ばれる新しいアルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-10-24T20:28:59Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。