論文の概要: FaceController: Controllable Attribute Editing for Face in the Wild
- arxiv url: http://arxiv.org/abs/2102.11464v1
- Date: Tue, 23 Feb 2021 02:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 14:00:12.007535
- Title: FaceController: Controllable Attribute Editing for Face in the Wild
- Title(参考訳): FaceController: 野生の顔のコントロール可能な属性編集
- Authors: Zhiliang Xu, Xiyu Yu, Zhibin Hong, Zhen Zhu, Junyu Han, Jingtuo Liu,
Errui Ding, Xiang Bai
- Abstract要約: 単純なフィードフォワードネットワークを提案し、高忠実度な顔を生成する。
本手法では,既存かつ容易に把握可能な事前情報を利用することで,野生の多様な顔属性の制御,転送,編集を行うことができる。
本手法では,3Dプリミティブを用いてアイデンティティ,表現,ポーズ,イルミネーションを分離し,地域別スタイルコードを用いてテクスチャとカラーを分離する。
- 参考スコア(独自算出の注目度): 74.56117807309576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face attribute editing aims to generate faces with one or multiple desired
face attributes manipulated while other details are preserved. Unlike prior
works such as GAN inversion, which has an expensive reverse mapping process, we
propose a simple feed-forward network to generate high-fidelity manipulated
faces. By simply employing some existing and easy-obtainable prior information,
our method can control, transfer, and edit diverse attributes of faces in the
wild. The proposed method can consequently be applied to various applications
such as face swapping, face relighting, and makeup transfer. In our method, we
decouple identity, expression, pose, and illumination using 3D priors; separate
texture and colors by using region-wise style codes. All the information is
embedded into adversarial learning by our identity-style normalization module.
Disentanglement losses are proposed to enhance the generator to extract
information independently from each attribute. Comprehensive quantitative and
qualitative evaluations have been conducted. In a single framework, our method
achieves the best or competitive scores on a variety of face applications.
- Abstract(参考訳): 顔属性編集は、1つまたは複数の望ましい顔属性が操作され、他の詳細が保存される顔を生成することを目的としている。
高価なリバースマッピングプロセスを持つGAN反転のような以前の作品とは異なり、高忠実度操作された顔を生成するための単純なフィードフォワードネットワークを提案します。
本手法では,既存かつ容易に把握可能な事前情報を利用することで,野生の多様な顔属性の制御,転送,編集を行うことができる。
提案手法は, 顔の交換, 顔の照明, メークアップの転送など, 様々な用途に適用できる。
本手法では,3Dプリミティブを用いてアイデンティティ,表現,ポーズ,イルミネーションを分離し,地域別スタイルコードを用いてテクスチャとカラーを分離する。
すべての情報は、アイデンティティスタイルの正規化モジュールによって逆学習に埋め込まれます。
各属性から独立して情報を抽出するジェネレータを強化するために, 絡み合い損失を提案する。
総合的定量的および定性評価が行われている。
一つのフレームワークにおいて,本手法は様々な顔アプリケーションにおいて最適な,あるいは競争的なスコアを得る。
関連論文リスト
- G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
可逆顔匿名化(Reversible face anonymization)は、顔画像の繊細なアイデンティティ情報を、合成された代替品に置き換えようとしている。
本稿では,Gtextsuperscript2Faceを提案する。
提案手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れる。
論文 参考訳(メタデータ) (2024-08-18T12:36:47Z) - High-Fidelity Face Swapping with Style Blending [16.024260677867076]
高忠実な顔交換のための革新的なエンドツーエンドフレームワークを提案する。
まず、スタイルGANベースの顔属性エンコーダを導入し、顔から重要な特徴を抽出し、潜在スタイルコードに変換する。
第二に、ターゲットからターゲットへFace IDを効果的に転送するアテンションベースのスタイルブレンディングモジュールを導入する。
論文 参考訳(メタデータ) (2023-12-17T23:22:37Z) - ManiCLIP: Multi-Attribute Face Manipulation from Text [104.30600573306991]
テキスト記述に基づく新しい多属性顔操作法を提案する。
本手法は,テキスト関連属性の編集を最小限に抑えた自然な顔を生成する。
論文 参考訳(メタデータ) (2022-10-02T07:22:55Z) - StyleSwap: Style-Based Generator Empowers Robust Face Swapping [90.05775519962303]
StyleSwapという簡潔で効果的なフレームワークを紹介します。
私たちの中核となる考え方は、スタイルベースのジェネレータを活用して、高忠実で堅牢な顔交換を可能にすることです。
最小限の変更だけで、StyleGAN2アーキテクチャはソースとターゲットの両方から望まれる情報をうまく処理できる。
論文 参考訳(メタデータ) (2022-09-27T16:35:16Z) - Learning Disentangled Representation for One-shot Progressive Face
Swapping [65.98684203654908]
ジェネレーティブ・アドバーサリアル・ネットワークに基づくワンショット・フェイススワップのためのシンプルで効率的なFaceSwapperを提案する。
提案手法は,不整合表現モジュールと意味誘導融合モジュールから構成される。
その結果,本手法は,トレーニングサンプルの少ないベンチマークで最先端の結果が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-24T11:19:04Z) - FacialGAN: Style Transfer and Attribute Manipulation on Synthetic Faces [9.664892091493586]
FacialGANは、リッチなスタイル転送と対話的な顔属性操作を可能にする新しいフレームワークである。
モデルが視覚的に説得力のある結果を生み出す能力は,スタイル伝達,属性操作,多様性,顔認証などである。
論文 参考訳(メタデータ) (2021-10-18T15:53:38Z) - Pixel Sampling for Style Preserving Face Pose Editing [53.14006941396712]
ジレンマを解くための新しい2段階のアプローチとして,顔のポーズ操作のタスクを顔に塗布する手法を提案する。
入力面から画素を選択的にサンプリングし、その相対位置をわずかに調整することにより、顔編集結果は、画像スタイルとともにアイデンティティ情報を忠実に保持する。
3D顔のランドマークをガイダンスとして、3自由度(ヨー、ピッチ、ロール)で顔のポーズを操作できるので、より柔軟な顔のポーズ編集が可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:29:29Z) - S2FGAN: Semantically Aware Interactive Sketch-to-Face Translation [11.724779328025589]
本稿では,S2FGANと呼ばれるスケッチ・ツー・イメージ生成フレームワークを提案する。
我々は2つの潜在空間を用いて顔の外観を制御し、生成した顔の所望の属性を調整する。
提案手法は,属性強度の制御性を高めることで,属性操作における最先端の手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-11-30T13:42:39Z) - FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping [43.236261887752065]
本研究では,顔交換のための2段階フレームワークであるFaceShifterを提案する。
最初の段階では、ターゲット属性を徹底的かつ適応的に利用して、スワップされた顔を高忠実に生成する。
難解な顔合成に対処するために、HEAR-Net(Huristic Err Accnowledging Refinement Network)と呼ばれる新しいヒューリスティック・エラー認識ネットワーク(Heuristic Err Acknowledging Refinement Network)の第2ステージを付加する。
論文 参考訳(メタデータ) (2019-12-31T17:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。