論文の概要: G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors
- arxiv url: http://arxiv.org/abs/2408.09458v1
- Date: Sun, 18 Aug 2024 12:36:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:30:46.957449
- Title: G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors
- Title(参考訳): G2Face: 生成および幾何学的優先順位による高忠実な可逆顔匿名化
- Authors: Haoxin Yang, Xuemiao Xu, Cheng Xu, Huaidong Zhang, Jing Qin, Yi Wang, Pheng-Ann Heng, Shengfeng He,
- Abstract要約: 可逆顔匿名化(Reversible face anonymization)は、顔画像の繊細なアイデンティティ情報を、合成された代替品に置き換えようとしている。
本稿では,Gtextsuperscript2Faceを提案する。
提案手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れる。
- 参考スコア(独自算出の注目度): 71.69161292330504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reversible face anonymization, unlike traditional face pixelization, seeks to replace sensitive identity information in facial images with synthesized alternatives, preserving privacy without sacrificing image clarity. Traditional methods, such as encoder-decoder networks, often result in significant loss of facial details due to their limited learning capacity. Additionally, relying on latent manipulation in pre-trained GANs can lead to changes in ID-irrelevant attributes, adversely affecting data utility due to GAN inversion inaccuracies. This paper introduces G\textsuperscript{2}Face, which leverages both generative and geometric priors to enhance identity manipulation, achieving high-quality reversible face anonymization without compromising data utility. We utilize a 3D face model to extract geometric information from the input face, integrating it with a pre-trained GAN-based decoder. This synergy of generative and geometric priors allows the decoder to produce realistic anonymized faces with consistent geometry. Moreover, multi-scale facial features are extracted from the original face and combined with the decoder using our novel identity-aware feature fusion blocks (IFF). This integration enables precise blending of the generated facial patterns with the original ID-irrelevant features, resulting in accurate identity manipulation. Extensive experiments demonstrate that our method outperforms existing state-of-the-art techniques in face anonymization and recovery, while preserving high data utility. Code is available at https://github.com/Harxis/G2Face.
- Abstract(参考訳): 可逆的な顔の匿名化は、従来の顔のピクセル化とは違って、顔画像の繊細なアイデンティティ情報を合成された代替品に置き換え、画像の明瞭さを犠牲にすることなくプライバシを保存することを目指している。
エンコーダ・デコーダネットワークのような従来の手法は、学習能力の制限により顔の詳細が著しく失われることが多い。
さらに、事前訓練されたGANの潜時操作に依存すると、ID非関連属性が変化し、GANの反転不正確さによるデータユーティリティに悪影響を及ぼす可能性がある。
本稿では、G\textsuperscript{2}Faceを導入し、データの有用性を損なうことなく高品質な可逆顔匿名化を実現する。
我々は3次元顔モデルを用いて入力面から幾何学的情報を抽出し、事前学習されたGANデコーダと統合する。
この生成的および幾何学的先行性の相乗効果により、デコーダは一貫した幾何で現実的な匿名化顔を生成することができる。
さらに、元の顔からマルチスケールの顔の特徴を抽出し、新しいID認識機能融合ブロック(IFF)を用いてデコーダと組み合わせる。
この統合により、生成された顔パターンと元のID非関連の特徴を正確にブレンドすることができ、正確な識別操作が可能になる。
大規模な実験により,本手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れていることが示された。
コードはhttps://github.com/Harxis/G2Faceで入手できる。
関連論文リスト
- OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
拡散モデルは、顔の修復において顕著な性能を示した。
顔復元のための新しいワンステップ拡散モデルOSDFaceを提案する。
その結果,OSDFaceは現状のSOTA(State-of-the-art)手法を視覚的品質と定量的指標の両方で上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-26T07:07:48Z) - Face Anonymization Made Simple [44.24233169815565]
現在の顔の匿名化技術は、しばしば、不正確で信頼性の低い顔認識モデルによって計算されたアイデンティティ損失に依存する。
対照的に,本手法では再建損失のみを伴う拡散モデルを用いて,顔のランドマークやマスクの必要性を排除している。
本モデルは,アイデンティティの匿名化,顔の保存,画質の3つの重要な領域において,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-11-01T17:45:21Z) - StableIdentity: Inserting Anybody into Anywhere at First Sight [57.99693188913382]
一つの顔画像で同一性に一貫性のある再テクスチャ化を可能にするStableIdentityを提案する。
私たちは、1つの画像から学んだアイデンティティを直接、微調整なしでビデオ/3D生成に注入する最初の人です。
論文 参考訳(メタデータ) (2024-01-29T09:06:15Z) - BlendFace: Re-designing Identity Encoders for Face-Swapping [2.320417845168326]
BlendFaceはフェイススワッピングのための新しいアイデンティティエンコーダである。
アイデンティティ機能をジェネレータに切り離し、ID損失関数としてジェネレータを適切に誘導する。
大規模な実験により、BlendFaceはフェイススワッピングモデルにおけるID-属性のゆがみを改善することが示されている。
論文 参考訳(メタデータ) (2023-07-20T13:17:30Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - FaceTuneGAN: Face Autoencoder for Convolutional Expression Transfer
Using Neural Generative Adversarial Networks [0.7043489166804575]
顔の識別と表情を分離して符号化する新しい3次元顔モデル表現であるFaceTuneGANを提案する。
本稿では,2次元領域で使用されている画像と画像の変換ネットワークを3次元顔形状に適応させる手法を提案する。
論文 参考訳(メタデータ) (2021-12-01T14:42:03Z) - HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping [116.1022638063613]
本研究では,光源面の顔形状を保存し,写真リアルな結果を生成できるHifiFaceを提案する。
本稿では,エンコーダとデコーダの組み合わせを最適化するSemantic Facial Fusionモジュールを提案する。
論文 参考訳(メタデータ) (2021-06-18T07:39:09Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
本稿では,3次元モデルを用いたドメイン転送型顔強調ネットワーク(DotFAN)を提案する。
DotFANは、他のドメインから収集された既存のリッチフェイスデータセットから抽出された知識に基づいて、入力顔の一連の変種を生成することができる。
実験によると、DotFANは、クラス内の多様性を改善するために、小さな顔データセットを増やすのに有益である。
論文 参考訳(メタデータ) (2020-02-23T08:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。