論文の概要: Data Fusion for Audiovisual Speaker Localization: Extending Dynamic
Stream Weights to the Spatial Domain
- arxiv url: http://arxiv.org/abs/2102.11588v2
- Date: Wed, 24 Feb 2021 07:57:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-26 06:31:26.392644
- Title: Data Fusion for Audiovisual Speaker Localization: Extending Dynamic
Stream Weights to the Spatial Domain
- Title(参考訳): 視聴覚話者ローカリゼーションのためのデータ融合:動的ストリーム重みを空間領域に拡張する
- Authors: Julio Wissing, Benedikt Boenninghoff, Dorothea Kolossa, Tsubasa
Ochiai, Marc Delcroix, Keisuke Kinoshita, Tomohiro Nakatani, Shoko Araki,
Christopher Schymura
- Abstract要約: 複数の話者の位置を推定することは、自動音声認識や話者ダイアリゼーションなどのタスクに役立ちます。
本稿では,個別の動的ストリーム重みを特定領域に割り当てることにより,話者定位のための新しい音声視覚データ融合フレームワークを提案する。
オーディオ・ヴィジュアル・レコードを用いた性能評価は,全てのベースラインモデルより優れた融合手法により,有望な結果をもたらす。
- 参考スコア(独自算出の注目度): 103.3388198420822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the positions of multiple speakers can be helpful for tasks like
automatic speech recognition or speaker diarization. Both applications benefit
from a known speaker position when, for instance, applying beamforming or
assigning unique speaker identities. Recently, several approaches utilizing
acoustic signals augmented with visual data have been proposed for this task.
However, both the acoustic and the visual modality may be corrupted in specific
spatial regions, for instance due to poor lighting conditions or to the
presence of background noise. This paper proposes a novel audiovisual data
fusion framework for speaker localization by assigning individual dynamic
stream weights to specific regions in the localization space. This fusion is
achieved via a neural network, which combines the predictions of individual
audio and video trackers based on their time- and location-dependent
reliability. A performance evaluation using audiovisual recordings yields
promising results, with the proposed fusion approach outperforming all baseline
models.
- Abstract(参考訳): 複数の話者の位置を推定することは、自動音声認識や話者ダイアリゼーションなどのタスクに役立ちます。
どちらのアプリケーションも、例えばビームフォーミングやユニークな話者IDの割り当てなど、既知の話者位置の恩恵を受ける。
近年,視覚データを付加した音響信号を用いた手法がいくつか提案されている。
しかし、例えば照明条件の悪さや背景ノイズの存在などにより、特定の空間領域において音響的・視覚的モダリティが損なわれることがある。
本稿では,個別の動的ストリーム重み付けを局所化空間内の特定領域に割り当てることにより,話者定位のための新しい音声視覚データ融合フレームワークを提案する。
この融合は、時間と位置に依存した信頼性に基づいて、個々のオーディオとビデオトラッカーの予測を組み合わせるニューラルネットワークを介して達成される。
オーディオ・ヴィジュアル・レコードを用いた性能評価は,全てのベースラインモデルより優れた融合手法により,有望な結果をもたらす。
関連論文リスト
- Prompting Segmentation with Sound Is Generalizable Audio-Visual Source
Localizer [22.846623384472377]
本稿では,アンコーダ-プロンプト-デコーダのパラダイムを導入し,融合したオーディオ視覚機能からローカライゼーションをデコードする。
具体的には,まずセマンティック・アウェア・オーディオ・プロンプト (SAP) の構築について提案する。
我々は,視覚基盤モデルの適切な知識を維持しつつ,最小限のトレーニング努力を維持するための相関適応器(ColA)を開発した。
論文 参考訳(メタデータ) (2023-09-13T05:43:35Z) - Audio-Visual Spatial Integration and Recursive Attention for Robust
Sound Source Localization [13.278494654137138]
人間は、音源を見つけるための空間的手がかりとして、オーディオと視覚の両方のモダリティを利用する。
両モードの空間的手がかりを統合した音声・視覚空間統合ネットワークを提案する。
提案手法はより堅牢な音源定位を実現する。
論文 参考訳(メタデータ) (2023-08-11T11:57:58Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
音響マッチングは、ターゲットの音響環境に録音されたかのように、音声クリップを再合成することを目的としている。
そこで本研究では,対象のシーン画像と音声のみを含む,視覚的音響マッチングのための自己教師型アプローチを提案する。
提案手法は,条件付きGANフレームワークと新しいメトリクスを用いて,室内音響をアンタングル化し,音をターゲット環境に再合成する方法を共同で学習する。
論文 参考訳(メタデータ) (2023-07-27T17:59:59Z) - Joint Learning of Visual-Audio Saliency Prediction and Sound Source
Localization on Multi-face Videos [101.83513408195692]
マルチタスク学習手法を提案する。
提案手法は,12種類の精度予測法より優れ,音源定位における競合的な結果が得られる。
論文 参考訳(メタデータ) (2021-11-05T14:35:08Z) - PILOT: Introducing Transformers for Probabilistic Sound Event
Localization [107.78964411642401]
本稿では,受信したマルチチャンネル音声信号の時間的依存性を自己アテンション機構によってキャプチャする,トランスフォーマーに基づく新しい音声イベント定位フレームワークを提案する。
このフレームワークは, 公開されている3つの音声イベントローカライズデータセットを用いて評価し, 局所化誤差と事象検出精度の点で最先端の手法と比較した。
論文 参考訳(メタデータ) (2021-06-07T18:29:19Z) - Dual Normalization Multitasking for Audio-Visual Sounding Object
Localization [0.0]
本研究では,音の視覚的位置のあいまいさを軽減するため,新しい概念である音場オブジェクトを提案する。
この新たなAVSOL問題に対処するために、デュアル正規化マルチタスクと呼ばれる新しいマルチタスクトレーニング戦略とアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-06-01T02:02:52Z) - End-to-End Diarization for Variable Number of Speakers with Local-Global
Networks and Discriminative Speaker Embeddings [66.50782702086575]
本論文では,単一チャンネルの音声記録から会議ダイアリゼーションを行う,エンドツーエンドのディープネットワークモデルを提案する。
提案システムは,可変数の置換不変なクロスエントロピーに基づく損失関数を用いて,未知数の話者とのミーティングを処理するように設計されている。
論文 参考訳(メタデータ) (2021-05-05T14:55:29Z) - Multimodal Attention Fusion for Target Speaker Extraction [108.73502348754842]
マルチモーダル核融合のための新しい注意機構とその訓練方法を提案する。
シミュレーションデータに対する従来の核融合機構よりも,信号対歪み比(SDR)を1.0dB向上させる。
論文 参考訳(メタデータ) (2021-02-02T05:59:35Z) - Audio-visual Speech Separation with Adversarially Disentangled Visual
Representation [23.38624506211003]
音声分離は、複数の同時話者による音声の混合から個々の音声を分離することを目的としている。
本モデルでは,顔検出器を用いて現場の話者数を検出し,視覚情報を用いて順列化問題を回避する。
提案モデルは,最先端のオーディオのみのモデルと3つのオーディオ視覚モデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-11-29T10:48:42Z) - Robust Speaker Recognition Using Speech Enhancement And Attention Model [37.33388614967888]
音声強調と話者認識を個別に処理する代わりに、ディープニューラルネットワークを用いた共同最適化により、2つのモジュールを1つのフレームワークに統合する。
雑音に対するロバスト性を高めるため、時間と周波数領域のコンテキスト情報から得られた話者関連特徴を強調するために、多段階アテンション機構を用いる。
その結果,音声強調モデルと多段階アテンションモデルを用いた提案手法は,実験のほとんどの音響条件下では使用しない2つの強いベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-01-14T20:03:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。