論文の概要: Robust Speaker Recognition Using Speech Enhancement And Attention Model
- arxiv url: http://arxiv.org/abs/2001.05031v2
- Date: Fri, 22 May 2020 09:16:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 12:15:56.914140
- Title: Robust Speaker Recognition Using Speech Enhancement And Attention Model
- Title(参考訳): 音声強調と注意モデルを用いたロバスト話者認識
- Authors: Yanpei Shi, Qiang Huang, Thomas Hain
- Abstract要約: 音声強調と話者認識を個別に処理する代わりに、ディープニューラルネットワークを用いた共同最適化により、2つのモジュールを1つのフレームワークに統合する。
雑音に対するロバスト性を高めるため、時間と周波数領域のコンテキスト情報から得られた話者関連特徴を強調するために、多段階アテンション機構を用いる。
その結果,音声強調モデルと多段階アテンションモデルを用いた提案手法は,実験のほとんどの音響条件下では使用しない2つの強いベースラインよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 37.33388614967888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a novel architecture for speaker recognition is proposed by
cascading speech enhancement and speaker processing. Its aim is to improve
speaker recognition performance when speech signals are corrupted by noise.
Instead of individually processing speech enhancement and speaker recognition,
the two modules are integrated into one framework by a joint optimisation using
deep neural networks. Furthermore, to increase robustness against noise, a
multi-stage attention mechanism is employed to highlight the speaker related
features learned from context information in time and frequency domain. To
evaluate speaker identification and verification performance of the proposed
approach, we test it on the dataset of VoxCeleb1, one of mostly used benchmark
datasets. Moreover, the robustness of our proposed approach is also tested on
VoxCeleb1 data when being corrupted by three types of interferences, general
noise, music, and babble, at different signal-to-noise ratio (SNR) levels. The
obtained results show that the proposed approach using speech enhancement and
multi-stage attention models outperforms two strong baselines not using them in
most acoustic conditions in our experiments.
- Abstract(参考訳): 本稿では,話者認識のための新しいアーキテクチャをカスケード音声強調処理と話者処理により提案する。
本研究の目的は,雑音による音声信号の劣化による音声認識性能の向上である。
音声強調と話者認識を個別に処理する代わりに、ディープニューラルネットワークを用いた共同最適化により、2つのモジュールを1つのフレームワークに統合する。
さらに、雑音に対する堅牢性を高めるために、時間と周波数領域のコンテキスト情報から得られた話者関連特徴を強調するために、多段階の注意機構を用いる。
提案手法の話者識別と検証性能を評価するために,主に使用されるベンチマークデータセットの1つであるvoxceleb1のデータセットでテストを行った。
さらに,VoxCeleb1データに対して,信号対雑音比(SNR)の異なる3種類の干渉(一般雑音,音楽,バブル)で劣化した場合に,提案手法のロバスト性を検証した。
その結果,本実験では,音声強調と多段注意モデルを用いた提案手法が,ほとんどの音響条件で使用しない2つの強いベースラインよりも優れていることがわかった。
関連論文リスト
- Incorporating Talker Identity Aids With Improving Speech Recognition in Adversarial Environments [0.2916558661202724]
音声認識と話者識別を共同で行うトランスフォーマーモデルを開発した。
クリーンな条件下では,ジョイントモデルがWhisperと相容れない性能を示す。
以上の結果から,音声認識と音声表現の統合により,対向条件下ではより堅牢なモデルが得られる可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-07T18:39:59Z) - A unified multichannel far-field speech recognition system: combining
neural beamforming with attention based end-to-end model [14.795953417531907]
本稿では,ニューラルビームフォーミングとトランスフォーマーをベースとしたリステン,スペル,アトンド(LAS)音声認識システムを組み合わせた多チャンネル遠距離音声認識システムを提案する。
提案手法は, 強いベースラインに比べて19.26%向上した。
論文 参考訳(メタデータ) (2024-01-05T07:11:13Z) - In search of strong embedding extractors for speaker diarisation [49.7017388682077]
話者ダイアリゼーションにEEを採用する際の2つの重要な問題に対処する。
まず、性能向上に必要な特徴が話者検証とダイアリゼーションに異なるため、評価は簡単ではない。
広く採用されている話者検証評価プロトコルの性能向上は、ダイアリゼーション性能の向上に繋がらないことを示す。
重なり合う音声や話者変化の入力を認識するために,2番目の問題を緩和する2つのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-10-26T13:00:29Z) - Audio-visual multi-channel speech separation, dereverberation and
recognition [70.34433820322323]
本稿では,音声-視覚的多チャンネル音声分離,デバーベレーション,認識手法を提案する。
音声を用いた場合の視覚的モダリティの利点は、2つのニューラルデバーベレーションアプローチでのみ示される。
LRS2データセットを用いて行った実験から,提案手法がベースラインよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-04-05T04:16:03Z) - PL-EESR: Perceptual Loss Based END-TO-END Robust Speaker Representation
Extraction [90.55375210094995]
音声強調は、背景雑音の抑制による音声信号の知覚品質の向上を目的としている。
本稿では,頑健な話者表現抽出のためのエンドツーエンドディープラーニングフレームワークPL-EESRを提案する。
論文 参考訳(メタデータ) (2021-10-03T07:05:29Z) - Data Fusion for Audiovisual Speaker Localization: Extending Dynamic
Stream Weights to the Spatial Domain [103.3388198420822]
複数の話者の位置を推定することは、自動音声認識や話者ダイアリゼーションなどのタスクに役立ちます。
本稿では,個別の動的ストリーム重みを特定領域に割り当てることにより,話者定位のための新しい音声視覚データ融合フレームワークを提案する。
オーディオ・ヴィジュアル・レコードを用いた性能評価は,全てのベースラインモデルより優れた融合手法により,有望な結果をもたらす。
論文 参考訳(メタデータ) (2021-02-23T09:59:31Z) - Audio-visual Speech Separation with Adversarially Disentangled Visual
Representation [23.38624506211003]
音声分離は、複数の同時話者による音声の混合から個々の音声を分離することを目的としている。
本モデルでは,顔検出器を用いて現場の話者数を検出し,視覚情報を用いて順列化問題を回避する。
提案モデルは,最先端のオーディオのみのモデルと3つのオーディオ視覚モデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-11-29T10:48:42Z) - Speaker Re-identification with Speaker Dependent Speech Enhancement [37.33388614967888]
本稿では,音声強調と話者認識を行う新しい手法を提案する。
提案手法は,実環境における話者認識評価を目的としたVoxceleb1データセットを用いて評価する。
論文 参考訳(メタデータ) (2020-05-15T23:02:10Z) - Deep Speaker Embeddings for Far-Field Speaker Recognition on Short
Utterances [53.063441357826484]
深層話者埋め込みに基づく話者認識システムは,制御条件下での大幅な性能向上を実現している。
制御されていない雑音環境下での短い発話に対する話者検証は、最も困難で要求の高いタスクの1つである。
本稿では,a)環境騒音の有無による遠距離話者検証システムの品質向上,b)短時間発話におけるシステム品質劣化の低減という2つの目標を達成するためのアプローチを提案する。
論文 参考訳(メタデータ) (2020-02-14T13:34:33Z) - Speech Enhancement using Self-Adaptation and Multi-Head Self-Attention [70.82604384963679]
本稿では,補助的話者認識機能を用いた音声強調のための自己適応手法について検討する。
テスト発話から直接適応に用いる話者表現を抽出する。
論文 参考訳(メタデータ) (2020-02-14T05:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。