Federated Learning for Physical Layer Design
- URL: http://arxiv.org/abs/2102.11777v1
- Date: Tue, 23 Feb 2021 16:22:53 GMT
- Title: Federated Learning for Physical Layer Design
- Authors: Ahmet M. Elbir and Anastasios K. Papazafeiropoulos and Symeon
Chatzinotas
- Abstract summary: Federated learning (FL) has been proposed recently as a distributed learning scheme.
FL is more communication-efficient and privacy-preserving than centralized learning (CL)
This article discusses the recent advances in FL-based training for physical layer design problems.
- Score: 38.46522285374866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-free techniques, such as machine learning (ML), have recently attracted
much interest for physical layer design, e.g., symbol detection, channel
estimation and beamforming. Most of these ML techniques employ centralized
learning (CL) schemes and assume the availability of datasets at a parameter
server (PS), demanding the transmission of data from the edge devices, such as
mobile phones, to the PS. Exploiting the data generated at the edge, federated
learning (FL) has been proposed recently as a distributed learning scheme, in
which each device computes the model parameters and sends them to the PS for
model aggregation, while the datasets are kept intact at the edge. Thus, FL is
more communication-efficient and privacy-preserving than CL and applicable to
the wireless communication scenarios, wherein the data are generated at the
edge devices. This article discusses the recent advances in FL-based training
for physical layer design problems, and identifies the related design
challenges along with possible solutions to improve the performance in terms of
communication overhead, model/data/hardware complexity.
Related papers
- Gradient-Congruity Guided Federated Sparse Training [31.793271982853188]
Federated learning (FL) is a distributed machine learning technique that facilitates this process while preserving data privacy.
FL also faces challenges such as high computational and communication costs regarding resource-constrained devices.
We propose the Gradient-Congruity Guided Federated Sparse Training (FedSGC), a novel method that integrates dynamic sparse training and gradient congruity inspection into federated learning framework.
arXiv Detail & Related papers (2024-05-02T11:29:48Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
cooperative edge learning (CE-FL) is a distributed machine learning architecture.
We model the processes taken during CE-FL, and conduct analytical training.
We show the effectiveness of our framework with the data collected from a real-world testbed.
arXiv Detail & Related papers (2022-03-26T00:41:57Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
An edge server and numerous mobile devices (clients) jointly learn a global model without transporting huge amount of data collected by the mobile devices to the edge server.
The proposed FL approach exploits spatial and temporal correlations between learning updates from different mobile devices scheduled to join STFL in various trainings.
An analytical framework of STFL is proposed and employed to study the learning capability of STFL via its convergence performance.
arXiv Detail & Related papers (2021-10-27T16:46:45Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
We develop a unified communication-learning optimization problem to jointly optimize device selection, over-the-air transceiver design, and RIS configuration.
Numerical experiments show that the proposed design achieves substantial learning accuracy improvement compared with the state-of-the-art approaches.
arXiv Detail & Related papers (2020-11-20T08:54:13Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO [12.487990897680422]
We introduce a federated learning (FL) based framework for hybrid beamforming, where the model training is performed at the base station.
We design a convolutional neural network, in which the input is the channel data, yielding the analog beamformers at the output.
FL is demonstrated to be more tolerant to the imperfections and corruptions in the channel data as well as having less transmission overhead than CML.
arXiv Detail & Related papers (2020-05-20T11:21:07Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
We introduce some recently implemented real-life applications of Federated Learning.
In large-scale networks, there may be clients with varying computational resource capabilities.
We highlight future directions in the FL area concerning resource-constrained devices.
arXiv Detail & Related papers (2020-02-25T01:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.