Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach
- URL: http://arxiv.org/abs/2011.10282v4
- Date: Tue, 1 Jun 2021 14:47:11 GMT
- Title: Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach
- Authors: Hang Liu, Xiaojun Yuan, Ying-Jun Angela Zhang
- Abstract summary: We develop a unified communication-learning optimization problem to jointly optimize device selection, over-the-air transceiver design, and RIS configuration.
Numerical experiments show that the proposed design achieves substantial learning accuracy improvement compared with the state-of-the-art approaches.
- Score: 30.1988598440727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To exploit massive amounts of data generated at mobile edge networks,
federated learning (FL) has been proposed as an attractive substitute for
centralized machine learning (ML). By collaboratively training a shared
learning model at edge devices, FL avoids direct data transmission and thus
overcomes high communication latency and privacy issues as compared to
centralized ML. To improve the communication efficiency in FL model
aggregation, over-the-air computation has been introduced to support a large
number of simultaneous local model uploading by exploiting the inherent
superposition property of wireless channels. However, due to the heterogeneity
of communication capacities among edge devices, over-the-air FL suffers from
the straggler issue in which the device with the weakest channel acts as a
bottleneck of the model aggregation performance. This issue can be alleviated
by device selection to some extent, but the latter still suffers from a
tradeoff between data exploitation and model communication. In this paper, we
leverage the reconfigurable intelligent surface (RIS) technology to relieve the
straggler issue in over-the-air FL. Specifically, we develop a learning
analysis framework to quantitatively characterize the impact of device
selection and model aggregation error on the convergence of over-the-air FL.
Then, we formulate a unified communication-learning optimization problem to
jointly optimize device selection, over-the-air transceiver design, and RIS
configuration. Numerical experiments show that the proposed design achieves
substantial learning accuracy improvement compared with the state-of-the-art
approaches, especially when channel conditions vary dramatically across edge
devices.
Related papers
- Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL) provides a privacy-preserving framework for training machine learning models on mobile edge devices.
Traditional FL algorithms, e.g., FedAvg, impose a heavy communication workload on these devices.
We propose a two-tier HFEL system, where edge devices are connected to edge servers and edge servers are interconnected through peer-to-peer (P2P) edge backhauls.
Our goal is to enhance the training efficiency of the HFEL system through strategic resource allocation and topology design.
arXiv Detail & Related papers (2024-09-29T01:48:04Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - CFLIT: Coexisting Federated Learning and Information Transfer [18.30671838758503]
We study the coexistence of over-the-air FL and traditional information transfer (IT) in a mobile edge network.
We propose a coexisting federated learning and information transfer (CFLIT) communication framework, where the FL and IT devices share the wireless spectrum in an OFDM system.
arXiv Detail & Related papers (2022-07-26T13:17:28Z) - Over-the-Air Multi-Task Federated Learning Over MIMO Interference
Channel [17.362158131772127]
We study over-the-air multi-task FL (OA-MTFL) over the multiple-input multiple-output (MIMO) interference channel.
We propose a novel model aggregation method for the alignment of local gradients for different devices.
We show that due to the use of the new model aggregation method, device selection is no longer essential to our scheme.
arXiv Detail & Related papers (2021-12-27T10:42:04Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Federated Learning for Physical Layer Design [38.46522285374866]
Federated learning (FL) has been proposed recently as a distributed learning scheme.
FL is more communication-efficient and privacy-preserving than centralized learning (CL)
This article discusses the recent advances in FL-based training for physical layer design problems.
arXiv Detail & Related papers (2021-02-23T16:22:53Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.