Deterministic preparation of non-classical states of light in
cavity-optomechanics
- URL: http://arxiv.org/abs/2102.12116v3
- Date: Thu, 2 Dec 2021 02:12:06 GMT
- Title: Deterministic preparation of non-classical states of light in
cavity-optomechanics
- Authors: Yuxun Ling and Florian Mintert
- Abstract summary: Cavity-optomechanics is an ideal platform for the generation non-Gaussian quantum states.
We derive a driving protocol that helps to exploit the anharmonic interaction for state preparation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cavity-optomechanics is an ideal platform for the generation non-Gaussian
quantum states due to the anharmonic interaction between the light field and
the mechanical oscillator; but exactly this interaction also impedes the
preparation in pure states of the light field. In this paper we derive a
driving protocol that helps to exploit the anharmonic interaction for state
preparation, and that ensures that the state of the light field remains
close-to-pure. This shall enable the deterministic preparation of photon Fock
states or coherent superpositions thereof.
Related papers
- Hierarchy of approximations for describing quantum light from high-harmonic generation: A Fermi-Hubbard model study [0.0]
We present a hierarchy of approximations for the equations of motion for the photonic state.
We find that for the typical experimental situation of weak quantized-light-matter-coupling constant and at intensities well below the damage threshold, an explicit expression for the generated quantum light captures the high-harmonic spectrum quantitatively.
arXiv Detail & Related papers (2024-10-25T12:59:29Z) - Proposal for Observing Nonclassicality in Highly Excited Mechanical
Oscillators by Single Photon Detection [0.0]
We present a state preparation protocol which renders a mechanical oscillator with an arbitrarily large coherent amplitude in a manifestly nonclassical state.
The protocol relies on coherent state preparation followed by a projective measurement of a single Raman scattered photon.
The nonclassicality of the state is reflected by sub-Poissonian phonon statistics, which can be accessed by measuring the statistics of subsequently emitted Raman sideband photons.
arXiv Detail & Related papers (2023-11-06T12:42:32Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Optical-cavity mode squeezing by free electrons [0.0]
We show that the ponderomotive contribution to the electron-cavity interaction can actually create a more general set of optical states.
Our work introduces a disruptive approach to the creation of nontrivial quantum cavity states for quantum information and optics applications.
arXiv Detail & Related papers (2022-06-24T10:57:43Z) - Stationary optomagnonic entanglement and magnon-to-optics quantum state
transfer via opto-magnomechanics [8.573839921517958]
We show how to prepare a steady-state entangled state between magnons and optical photons in an opto-magnomechanical configuration.
The demonstrated entanglement and state-readout protocols in such a novel opto-magnomechanical configuration allow us to optically control, prepare, and read out quantum states of collective spin excitations in solids.
arXiv Detail & Related papers (2022-06-12T07:52:08Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Connecting steady-states of driven-dissipative photonic lattices with
spontaneous collective emission phenomena [91.3755431537592]
We use intuition to predict the formation of non-trivial photonic steady-states in one and two dimensions.
We show that subradiant emitter configurations are linked to the emergence of steady-state light-localization in the driven-dissipative setting.
These results shed light on the recently reported optically-defined cavities in polaritonic lattices.
arXiv Detail & Related papers (2021-12-27T23:58:42Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Parametrized protocol achieving the Heisenberg limit in the optical domain via dispersive atom-light interactions [0.7114071041639005]
We study the time-reversal protocol that has been proposed to sense small displacements of the light field.
We show the holonomic unitary parametrization process of the scheme and one only need to choose appropriate initial states to pursue the ultimate sensitivity.
arXiv Detail & Related papers (2020-10-28T09:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.