論文の概要: Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration
- arxiv url: http://arxiv.org/abs/2102.12182v1
- Date: Wed, 24 Feb 2021 10:18:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-25 13:42:54.509053
- Title: Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration
- Title(参考訳): ポストホック不確かさ校正における表現力増強のためのパラメータ化温度スケーリング
- Authors: Christian Tomani, Daniel Cremers, Florian Buettner
- Abstract要約: 我々は新しいキャリブレーション手法であるパラメタライズド温度スケーリング(PTS)を導入する。
最新のポストホックキャリブレータの精度保持性能は、その本質的な表現力によって制限されることを実証します。
当社の新しい精度保存手法が,多数のモデルアーキテクチャやデータセット,メトリクスにおいて,既存のアルゴリズムを一貫して上回っていることを示す。
- 参考スコア(独自算出の注目度): 57.568461777747515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of uncertainty calibration and introduce a novel
calibration method, Parametrized Temperature Scaling (PTS). Standard deep
neural networks typically yield uncalibrated predictions, which can be
transformed into calibrated confidence scores using post-hoc calibration
methods. In this contribution, we demonstrate that the performance of
accuracy-preserving state-of-the-art post-hoc calibrators is limited by their
intrinsic expressive power. We generalize temperature scaling by computing
prediction-specific temperatures, parameterized by a neural network. We show
with extensive experiments that our novel accuracy-preserving approach
consistently outperforms existing algorithms across a large number of model
architectures, datasets and metrics.
- Abstract(参考訳): 不確実性校正の問題に対処し,新しい校正法であるパラメトリズド温度スケーリング(pts)を導入する。
標準的なディープニューラルネットワークは、典型的には未調整の予測を出力し、ポストホックキャリブレーション法を用いてキャリブレーションされた信頼性スコアに変換できる。
本研究は, 精度保存型ポストホックキャリブレータの性能が本質的な表現力によって制限されることを実証する。
ニューラルネットワークによってパラメータ化された予測特異的温度を計算し、温度スケーリングを一般化する。
当社の新しい精度保存手法が,多数のモデルアーキテクチャやデータセット,メトリクスにおいて,既存のアルゴリズムを一貫して上回っていることを示す。
関連論文リスト
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
現代のディープニューラルネットワーク(DNN)は、しばしば過剰な自信に悩まされ、誤校正につながる。
この問題に対処するために,特徴クリッピング(FC)と呼ばれるポストホックキャリブレーション手法を提案する。
FCは特定の閾値に特徴値をクリップし、高い校正誤差サンプルのエントロピーを効果的に増加させる。
論文 参考訳(メタデータ) (2024-10-16T06:44:35Z) - Calibrating Language Models with Adaptive Temperature Scaling [58.056023173579625]
本稿では,各トークンの温度スケーリングパラメータを予測するポストホックキャリブレーション法であるAdaptive Temperature Scaling (ATS)を紹介する。
ATSは、以前のキャリブレーション法と比較して、3つの下流自然言語評価ベンチマークで10-50%以上のキャリブレーションを改善する。
論文 参考訳(メタデータ) (2024-09-29T22:54:31Z) - Calibration of Neural Networks [77.34726150561087]
本稿では,ニューラルネットワークの文脈における信頼性校正問題について調査する。
我々は,問題文,キャリブレーション定義,評価に対する異なるアプローチについて分析する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
論文 参考訳(メタデータ) (2023-03-19T20:27:51Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Adaptive Temperature Scaling for Robust Calibration of Deep Neural
Networks [0.7219077740523682]
本研究では、信頼性スケーリングの課題、特に温度スケーリングを一般化するポストホック手法に焦点を当てる。
ニューラルネットワークのような複雑なデータモデルがたくさん存在すると、パフォーマンスは向上するが、データ量に制限がある場合には失敗する傾向にある。
本研究では,エントロピーに基づく温度スケーリングを提案し,そのエントロピーに応じて予測の信頼性を尺度化する。
論文 参考訳(メタデータ) (2022-07-31T16:20:06Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
ニューラルネットワークの誤りを補うポストホックアプローチは、温度スケーリングを実行することだ。
入力毎に異なる温度値を予測し、信頼度と精度のミスマッチを調整することを提案する。
CIFAR10/100およびTiny-ImageNetデータセットを用いて,ResNet50およびWideResNet28-10アーキテクチャ上で本手法をテストする。
論文 参考訳(メタデータ) (2022-07-13T14:13:49Z) - Revisiting Calibration for Question Answering [16.54743762235555]
従来のキャリブレーション評価はモデル信頼性の有用性を反映していないと論じる。
モデルが誤った予測に低信頼を割り当て、正しい予測に高信頼を割り当てているかどうかをよりよく把握する新しい校正基準であるMacroCEを提案する。
論文 参考訳(メタデータ) (2022-05-25T05:49:56Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
ディープアンサンブルが必ずしもキャリブレーション特性の改善につながるとは限らないことを示す。
そこで本研究では,混成正規化などの現代的な手法と併用して標準アンサンブル法を用いることで,キャリブレーションの少ないモデルが得られることを示す。
このテキストは、データが不足しているときにディープラーニングを活用するために、最も単純で一般的な3つのアプローチの相互作用を調べる。
論文 参考訳(メタデータ) (2020-07-17T07:32:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。