論文の概要: Creolizing the Web
- arxiv url: http://arxiv.org/abs/2102.12382v1
- Date: Wed, 24 Feb 2021 16:08:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-25 18:19:21.208604
- Title: Creolizing the Web
- Title(参考訳): Webを創る
- Authors: Abhinav Tamaskar, Roy Rinberg, Sunandan Chakraborty, Bud Mishra
- Abstract要約: 本稿では,言語進化の社会学的モデルにおける進化パターンの検出手法を提案する。
我々は,個人間のコミュニケーションに基づく言語の一般化進化モデルに対する厳密な基礎を提供する最小主義モデルを開発した。
実験結果とその解釈を rdt から得られた実世界のデータセットに提示し,コミュニティを識別し,意見の反響室を抽出する。
- 参考スコア(独自算出の注目度): 2.393911349115195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evolution of language has been a hotly debated subject with contradicting
hypotheses and unreliable claims. Drawing from signalling games, dynamic
population mechanics, machine learning and algebraic topology, we present a
method for detecting evolutionary patterns in a sociological model of language
evolution. We develop a minimalistic model that provides a rigorous base for
any generalized evolutionary model for language based on communication between
individuals. We also discuss theoretical guarantees of this model, ranging from
stability of language representations to fast convergence of language by
temporal communication and language drift in an interactive setting. Further we
present empirical results and their interpretations on a real world dataset
from \rdt to identify communities and echo chambers for opinions, thus placing
obstructions to reliable communication among communities.
- Abstract(参考訳): 言語の進化は、仮説と信頼できない主張と矛盾する激しい議論の対象となっている。
本稿では,信号ゲーム,動的集団力学,機械学習,代数トポロジーから,言語進化の社会学的モデルにおける進化パターンを検出する手法を提案する。
我々は,個人間のコミュニケーションに基づく言語の一般化進化モデルに対する厳密な基礎を提供する最小主義モデルを開発した。
また,言語表現の安定性から時間的コミュニケーションによる言語収束,対話的環境における言語ドリフトなど,このモデルの理論的保証についても論じる。
さらに,実世界データセット上での実証結果とその解釈を行い,コミュニティの意見を識別し,コミュニティ間の信頼性の高いコミュニケーションに障害を与える。
関連論文リスト
- Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning [69.8008228833895]
本稿では,連続学習機構を備えた小型生成ニューラルネットワークを提案する。
我々のモデルは解釈可能性を重視し,オンライン学習の利点を実証する。
論文 参考訳(メタデータ) (2024-12-23T10:23:47Z) - Analyzing The Language of Visual Tokens [48.62180485759458]
我々は、離散的な視覚言語を分析するために、自然言語中心のアプローチをとる。
トークンの高度化はエントロピーの増大と圧縮の低下を招き,トークンが主にオブジェクト部品を表すことを示す。
また、視覚言語には結合的な文法構造が欠如していることが示され、自然言語と比較して難易度が高く、階層構造が弱いことが判明した。
論文 参考訳(メタデータ) (2024-11-07T18:59:28Z) - Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
検索強化に関して,言語モデルの信頼性に焦点をあてる。
検索強化言語モデルには,文脈的知識とパラメトリック的知識の両方に応じて応答を供給できる本質的な能力があると考えられる。
言語モデルと人間の嗜好の整合性に着想を得て,検索強化言語モデルを外部証拠にのみ依存する状況に整合させるための第一歩を踏み出した。
論文 参考訳(メタデータ) (2024-10-22T09:25:21Z) - Language Models as Models of Language [0.0]
この章は、理論言語学への現代言語モデルの潜在的貢献について批判的に考察する。
言語モデルが階層的な構文構造を学習し,様々な言語現象に対する感受性を示すことを示唆する経験的証拠の蓄積を概説する。
私は、理論言語学者と計算研究者の緊密な協力が貴重な洞察をもたらすと結論づける。
論文 参考訳(メタデータ) (2024-08-13T18:26:04Z) - NeLLCom-X: A Comprehensive Neural-Agent Framework to Simulate Language Learning and Group Communication [2.184775414778289]
最近導入されたNeLLComフレームワークにより、エージェントはまず人工言語を学習し、次にそれを通信に使用することができる。
より現実的な役割交代エージェントとグループコミュニケーションを導入することで、このフレームワークを拡張します。
論文 参考訳(メタデータ) (2024-07-19T03:03:21Z) - Modeling language contact with the Iterated Learning Model [0.0]
反復学習モデルは言語変化のエージェントベースモデルである。
最近導入された反復学習モデルであるSemi-Supervised ILMは、言語接触をシミュレートするために使われている。
論文 参考訳(メタデータ) (2024-06-11T01:43:23Z) - Language Evolution with Deep Learning [49.879239655532324]
計算モデリングは言語の出現の研究において重要な役割を担っている。
構造化言語の出現を誘発する可能性のある条件と学習プロセスをシミュレートすることを目的としている。
この章では、最近機械学習の分野に革命をもたらした別の種類の計算モデル、ディープ・ラーニング・モデルについて論じる。
論文 参考訳(メタデータ) (2024-03-18T16:52:54Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Language Model Evaluation Beyond Perplexity [47.268323020210175]
我々は、言語モデルから生成されたテキストが、訓練された人為的なテキストに存在する統計的傾向を示すかどうかを分析する。
ニューラルネットワークモデルは、考慮された傾向のサブセットのみを学習しているように見えるが、提案された理論分布よりも経験的傾向とより密接に一致している。
論文 参考訳(メタデータ) (2021-05-31T20:13:44Z) - The Rediscovery Hypothesis: Language Models Need to Meet Linguistics [8.293055016429863]
現代言語モデルの性能向上に言語知識が必須条件であるかどうかを検討する。
その結果, 言語構造を探索した場合, かなり圧縮されるが, 事前学習目的によく適合する言語モデルは, 良好なスコアを保っていることがわかった。
この結果は再発見仮説を支持し,本論文の第2の貢献である言語モデル目標と言語情報との関連性に関する情報論的枠組みを導出する。
論文 参考訳(メタデータ) (2021-03-02T15:57:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。