論文の概要: Designing Explanations for Group Recommender Systems
- arxiv url: http://arxiv.org/abs/2102.12413v1
- Date: Wed, 24 Feb 2021 17:05:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-25 13:26:48.118453
- Title: Designing Explanations for Group Recommender Systems
- Title(参考訳): グループレコメンデーションシステムのための説明設計
- Authors: A. Felfernig and N. Tintarev and T.N.T. Trang and M. Stettinger
- Abstract要約: 様々な理由でレコメンデーションシステムで説明が用いられる。
レコメンダーシステムの開発者は、特定のアイテムを購入するようにユーザーに説得したいです。
ユーザーは、レコメンダシステムがどのように機能し、なぜ特定のアイテムが推奨されたのかをよりよく理解する必要がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explanations are used in recommender systems for various reasons. Users have
to be supported in making (high-quality) decisions more quickly. Developers of
recommender systems want to convince users to purchase specific items. Users
should better understand how the recommender system works and why a specific
item has been recommended. Users should also develop a more in-depth
understanding of the item domain. Consequently, explanations are designed in
order to achieve specific \emph{goals} such as increasing the transparency of a
recommendation or increasing a user's trust in the recommender system. In this
paper, we provide an overview of existing research related to explanations in
recommender systems, and specifically discuss aspects relevant to group
recommendation scenarios. In this context, we present different ways of
explaining and visualizing recommendations determined on the basis of
preference aggregation strategies.
- Abstract(参考訳): 様々な理由でレコメンデーションシステムで説明が用いられる。
ユーザは(高品質な)意思決定をより迅速に行うことをサポートする必要があります。
レコメンダーシステムの開発者は、特定のアイテムを購入するようにユーザーに説得したいです。
ユーザーは、レコメンダシステムがどのように機能し、なぜ特定のアイテムが推奨されたのかをよりよく理解する必要がある。
ユーザーはまた、アイテムドメインのより詳細な理解を開発するべきです。
したがって、レコメンデーションの透明性を高めたり、レコメンデーションシステムに対するユーザの信頼を高めるなど、特定の \emph{goals} を達成するために説明がデザインされる。
本稿では,レコメンデーションシステムにおける説明に関する既存の研究の概要を述べるとともに,グループレコメンデーションのシナリオに関する側面を具体的に論じる。
この文脈では,選好アグリゲーション戦略に基づいて決定されるレコメンデーションの説明と視覚化の異なる方法を提案する。
関連論文リスト
- Post-Userist Recommender Systems : A Manifesto [1.7157586976839874]
我々は,ユーザとシステムの関係を考慮に入れたレコメンデーションシステムに対するアプローチとして,ユーザリストレコメンデーションを定義した。
ポストユーザーストレコメンデーションは、利害関係者が埋め込まれ、レコメンデーション機能が生成メディアと区別される、より大きな関係分野を仮定する。
論文 参考訳(メタデータ) (2024-10-09T03:16:37Z) - RecRec: Algorithmic Recourse for Recommender Systems [41.97186998947909]
特定の予測やレコメンデーションを行う上で、すべての利害関係者がモデルの理論的根拠を理解することが不可欠です。
これは、リコメンデーションシステムに依存するコンテンツプロバイダにとって特に当てはまります。
本稿では,コンテンツ提供者を対象としたレコメンデーションシステムのためのレコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-28T22:26:50Z) - User-Controllable Recommendation via Counterfactual Retrospective and
Prospective Explanations [96.45414741693119]
本稿では,説明可能性と可制御性をシームレスに統合するユーザ制御型レコメンデータシステムを提案する。
反ファクト推論を通じて、ふりかえりと予測的な説明の両方を提供することで、ユーザーはシステムに対する制御をカスタマイズできる。
論文 参考訳(メタデータ) (2023-08-02T01:13:36Z) - Visualization for Recommendation Explainability: A Survey and New Perspectives [0.0]
本研究では,4次元のレコメンデータシステムにおける説明に関する文献を体系的にレビューする。
我々は,レコメンデーションシステムにおいて,説明的視覚化を設計するための一連のガイドラインを導出する。
本研究の目的は、視覚的に説明可能なレコメンデーション研究の可能性について、研究者や実践者がより深く理解することである。
論文 参考訳(メタデータ) (2023-05-19T15:42:00Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systemsでは、利用者の期待にタイムリーかつ関連性がありながら、コミュニティ内のトレンドアイテムを識別することができる。
より優れた品質のレコメンデーションを達成するために、ディープラーニングの手法が提案されている。
研究者たちは、最も効果的なレコメンデーションを提供するために、標準レコメンデーションシステムの能力を拡大しようと試みている。
論文 参考訳(メタデータ) (2022-05-03T22:13:33Z) - Explainability in Music Recommender Systems [69.0506502017444]
音楽レコメンダシステム(MRS)の文脈における説明可能性について論じる。
MRSは非常に複雑で、推奨精度に最適化されることが多い。
本稿では、MSSに説明可能性コンポーネントを組み込む方法と、どのようなフォーム説明を提供するかを示す。
論文 参考訳(メタデータ) (2022-01-25T18:32:11Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z) - Survey for Trust-aware Recommender Systems: A Deep Learning Perspective [48.2733163413522]
信頼できるレコメンデーションシステムを採用することが重要になります。
本調査では,信頼を意識したレコメンデータシステムの3つのカテゴリについて概説する。
論文 参考訳(メタデータ) (2020-04-08T02:11:55Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。