論文の概要: Visualization for Recommendation Explainability: A Survey and New Perspectives
- arxiv url: http://arxiv.org/abs/2305.11755v3
- Date: Wed, 5 Jun 2024 14:41:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 04:36:49.854755
- Title: Visualization for Recommendation Explainability: A Survey and New Perspectives
- Title(参考訳): 推薦説明可能性の可視化:調査と新たな展望
- Authors: Mohamed Amine Chatti, Mouadh Guesmi, Arham Muslim,
- Abstract要約: 本研究では,4次元のレコメンデータシステムにおける説明に関する文献を体系的にレビューする。
我々は,レコメンデーションシステムにおいて,説明的視覚化を設計するための一連のガイドラインを導出する。
本研究の目的は、視覚的に説明可能なレコメンデーション研究の可能性について、研究者や実践者がより深く理解することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Providing system-generated explanations for recommendations represents an important step towards transparent and trustworthy recommender systems. Explainable recommender systems provide a human-understandable rationale for their outputs. Over the last two decades, explainable recommendation has attracted much attention in the recommender systems research community. This paper aims to provide a comprehensive review of research efforts on visual explanation in recommender systems. More concretely, we systematically review the literature on explanations in recommender systems based on four dimensions, namely explanation goal, explanation scope, explanation style, and explanation format. Recognizing the importance of visualization, we approach the recommender system literature from the angle of explanatory visualizations, that is using visualizations as a display style of explanation. As a result, we derive a set of guidelines that might be constructive for designing explanatory visualizations in recommender systems and identify perspectives for future work in this field. The aim of this review is to help recommendation researchers and practitioners better understand the potential of visually explainable recommendation research and to support them in the systematic design of visual explanations in current and future recommender systems.
- Abstract(参考訳): システム生成によるレコメンデーションの説明を提供することは、透明で信頼できるレコメンデーションシステムへの重要なステップである。
説明可能なレコメンデータシステムは、アウトプットに対して人間の理解可能な理論的根拠を提供する。
過去20年間、説明可能なレコメンデーションは、レコメンデーションシステム研究コミュニティで多くの注目を集めてきた。
本稿では,レコメンデーションシステムにおける視覚的説明に関する研究成果の総合的なレビューを行うことを目的とする。
より具体的には,4次元の「説明目標」,「説明範囲」,「説明スタイル」,「説明形式」の4次元に基づくレコメンデータシステムにおける説明に関する文献を体系的にレビューする。
ビジュアライゼーションの重要性を認識し,説明的ビジュアライゼーションの角度からレコメンダシステム文献にアプローチする。
その結果,レコメンデーションシステムにおける説明的視覚化を設計し,今後の研究の視点を明らかにするための一連のガイドラインが導出された。
このレビューの目的は、研究者や実践者が視覚的に説明可能なレコメンデーション研究の可能性をよりよく理解し、現在および将来のレコメンデーションシステムにおける視覚的説明の体系設計を支援することである。
関連論文リスト
- Review of Explainable Graph-Based Recommender Systems [2.1711205684359247]
本稿では,説明可能なグラフベースレコメンデータシステムの最先端のアプローチについて論じる。
それは、学習方法、説明方法、説明型という3つの側面に基づいて分類する。
論文 参考訳(メタデータ) (2024-07-31T21:30:36Z) - Impression-Aware Recommender Systems [57.38537491535016]
新たなデータソースは、レコメンデーションシステムの品質を改善する新しい機会をもたらす。
研究者はインプレッションを使ってユーザーの好みを洗練させ、推奨システム研究の現在の制限を克服することができる。
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-08-15T16:16:02Z) - Recent Developments in Recommender Systems: A Survey [34.810859384592355]
この研究は、パーソナライズされたシステムやグループレコメンデーションシステムを含む、レコメンデーションシステムの主要な分類を包括的にまとめることから始まる。
この調査は、レコメンデータシステムにおける堅牢性、データバイアス、公平性の問題を分析します。
この研究は、リコメンデータシステムの開発における最新のトレンドについての洞察を提供し、この分野における今後の研究の方向性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-06-22T05:51:49Z) - Measuring "Why" in Recommender Systems: a Comprehensive Survey on the
Evaluation of Explainable Recommendation [87.82664566721917]
この調査は、IJCAI、AAAI、TheWebConf、Recsys、UMAP、IUIといったトップレベルのカンファレンスから100以上の論文に基づいています。
論文 参考訳(メタデータ) (2022-02-14T02:58:55Z) - Designing Explanations for Group Recommender Systems [0.0]
様々な理由でレコメンデーションシステムで説明が用いられる。
レコメンダーシステムの開発者は、特定のアイテムを購入するようにユーザーに説得したいです。
ユーザーは、レコメンダシステムがどのように機能し、なぜ特定のアイテムが推奨されたのかをよりよく理解する必要がある。
論文 参考訳(メタデータ) (2021-02-24T17:05:39Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
実験による推薦システムに対する事前学習の利点を示す。
事前学習を伴うレコメンデータシステムの今後の研究に向けて,いくつかの将来的な方向性について論じる。
論文 参考訳(メタデータ) (2020-09-19T13:06:27Z) - Recommender Systems for the Internet of Things: A Survey [53.865011795953706]
勧告は、モノのインターネット(Internet of Things)の利益を開発し、促進する上で重要な段階である。
従来のレコメンデータシステムは、成長を続ける、動的で、異質なIoTデータを活用することができません。
論文 参考訳(メタデータ) (2020-07-14T01:24:44Z) - Survey for Trust-aware Recommender Systems: A Deep Learning Perspective [48.2733163413522]
信頼できるレコメンデーションシステムを採用することが重要になります。
本調査では,信頼を意識したレコメンデータシステムの3つのカテゴリについて概説する。
論文 参考訳(メタデータ) (2020-04-08T02:11:55Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。