FERMI: Fair Empirical Risk Minimization via Exponential R\'enyi Mutual
Information
- URL: http://arxiv.org/abs/2102.12586v1
- Date: Wed, 24 Feb 2021 22:15:44 GMT
- Title: FERMI: Fair Empirical Risk Minimization via Exponential R\'enyi Mutual
Information
- Authors: Andrew Lowy, Rakesh Pavan, Sina Baharlouei, Meisam Razaviyayn, Ahmad
Beirami
- Abstract summary: We show that ERMI is a strong fairness violation notion in the sense that it provides upper bound guarantees on existing notions of fairness violation.
We then propose the Fair Empirical Risk Minimization via ERMI regularization framework, called FERMI.
- Score: 17.57634911587209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a new notion of fairness violation, called
Exponential R\'enyi Mutual Information (ERMI). We show that ERMI is a strong
fairness violation notion in the sense that it provides upper bound guarantees
on existing notions of fairness violation. We then propose the Fair Empirical
Risk Minimization via ERMI regularization framework, called FERMI. Whereas most
existing in-processing fairness algorithms are deterministic, we provide the
first stochastic optimization method with a provable convergence guarantee for
solving FERMI. Our stochastic algorithm is amenable to large-scale problems, as
we demonstrate experimentally. In addition, we provide a batch (deterministic)
algorithm for solving FERMI with the optimal rate of convergence. Both of our
algorithms are applicable to problems with multiple (non-binary) sensitive
attributes and non-binary targets. Extensive experiments show that FERMI
achieves the most favorable tradeoffs between fairness violation and test
accuracy across various problem setups compared with state-of-the-art
baselines.
Related papers
- Finite-Sample and Distribution-Free Fair Classification: Optimal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness [14.421493372559762]
We quantify the impact of enforcing algorithmic fairness and group-blindness in binary classification under group fairness constraints.
We propose a unified framework for fair classification that provides distribution-free and finite-sample fairness guarantees with controlled excess risk.
arXiv Detail & Related papers (2024-10-21T20:04:17Z) - Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations.
We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games.
Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization [9.591164070876689]
This paper presents a unified optimization framework for fair empirical risk based on f-divergence measures (f-FERM)
In addition, our experiments demonstrate the superiority of fairness-accuracy tradeoffs offered by f-FERM for almost all batch sizes.
Our extension is based on a distributionally robust optimization reformulation of f-FERM objective under $L_p$ norms as uncertainty sets.
arXiv Detail & Related papers (2023-12-06T03:14:16Z) - Exponentially Convergent Algorithms for Supervised Matrix Factorization [2.1485350418225244]
Supervised factorization (SMF) is a machine learning method that converges extraction and classification tasks.
Our paper provides a novel framework that 'lifts' SMF as a low-rank estimation problem in a combined factor space estimation.
arXiv Detail & Related papers (2023-11-18T23:24:02Z) - Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk
Minimization Framework [12.734559823650887]
In the presence of distribution shifts, fair machine learning models may behave unfairly on test data.
Existing algorithms require full access to data and cannot be used when small batches are used.
This paper proposes the first distributionally robust fairness framework with convergence guarantees that do not require knowledge of the causal graph.
arXiv Detail & Related papers (2023-09-20T23:25:28Z) - Implicitly normalized forecaster with clipping for linear and non-linear
heavy-tailed multi-armed bandits [85.27420062094086]
Implicitly Normalized Forecaster (INF) is considered an optimal solution for adversarial multi-armed bandit (MAB) problems.
We propose a new version of INF called the Implicitly Normalized Forecaster with clipping (INFclip) for MAB problems with heavy-tailed settings.
We demonstrate that INFclip is optimal for linear heavy-tailed MAB problems and works well for non-linear ones.
arXiv Detail & Related papers (2023-05-11T12:00:43Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
We propose a novel method, dubbed Cross-Modal Info-Max Hashing (CMIMH)
We learn informative representations that can preserve both intra- and inter-modal similarities.
The proposed method consistently outperforms other state-of-the-art cross-modal retrieval methods.
arXiv Detail & Related papers (2021-12-13T08:58:03Z) - Fairness and Robustness in Invariant Learning: A Case Study in Toxicity
Classification [13.456851070400024]
Invariant Risk Minimization (IRM) is a domain generalization algorithm that employs a causal discovery inspired method to find robust predictors.
We show that IRM achieves better out-of-distribution accuracy and fairness than Empirical Risk Minimization (ERM) methods.
arXiv Detail & Related papers (2020-11-12T16:42:14Z) - Stochastic Hard Thresholding Algorithms for AUC Maximization [49.00683387735522]
We develop a hard thresholding algorithm for AUC in distributiond classification.
We conduct experiments to show the efficiency and effectiveness of the proposed algorithms.
arXiv Detail & Related papers (2020-11-04T16:49:29Z) - Thompson Sampling Algorithms for Mean-Variance Bandits [97.43678751629189]
We develop Thompson Sampling-style algorithms for mean-variance MAB.
We also provide comprehensive regret analyses for Gaussian and Bernoulli bandits.
Our algorithms significantly outperform existing LCB-based algorithms for all risk tolerances.
arXiv Detail & Related papers (2020-02-01T15:33:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.