論文の概要: Binary segmentation of medical images using implicit spline
representations and deep learning
- arxiv url: http://arxiv.org/abs/2102.12759v1
- Date: Thu, 25 Feb 2021 10:04:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-26 13:53:55.137645
- Title: Binary segmentation of medical images using implicit spline
representations and deep learning
- Title(参考訳): 暗黙的スプライン表現と深層学習を用いた医療画像のバイナリセグメンテーション
- Authors: Oliver J.D. Barrowclough, Georg Muntingh, Varatharajan Nainamalai,
Ivar Stangeby
- Abstract要約: 本稿では,暗黙のスプライン表現と深層畳み込みニューラルネットワークを組み合わせた画像分割手法を提案する。
当社のベストネットワークでは、Diceの平均ボリュームテストスコアが92%近くに達し、この先天性心疾患データセットの最先端に達しています。
- 参考スコア(独自算出の注目度): 1.5293427903448025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel approach to image segmentation based on combining implicit
spline representations with deep convolutional neural networks. This is done by
predicting the control points of a bivariate spline function whose zero-set
represents the segmentation boundary. We adapt several existing neural network
architectures and design novel loss functions that are tailored towards
providing implicit spline curve approximations. The method is evaluated on a
congenital heart disease computed tomography medical imaging dataset.
Experiments are carried out by measuring performance in various standard
metrics for different networks and loss functions. We determine that splines of
bidegree $(1,1)$ with $128\times128$ coefficient resolution performed optimally
for $512\times 512$ resolution CT images. For our best network, we achieve an
average volumetric test Dice score of almost 92%, which reaches the state of
the art for this congenital heart disease dataset.
- Abstract(参考訳): 本稿では,暗黙のスプライン表現と深層畳み込みニューラルネットワークを組み合わせた画像分割手法を提案する。
これは、ゼロ集合がセグメンテーション境界を表す双変量スプライン関数の制御点を予測することによって行われる。
既存のニューラルネットワークアーキテクチャを適応させ、暗黙のスプライン曲線近似を提供するために調整された新しい損失関数を設計する。
この方法は先天性心疾患ct医用画像データセット上で評価される。
各種ネットワークおよび損失関数に対する各種標準指標の性能測定により実験を行った。
我々は、512\times 512$解像CT画像のために最適に実行された128\times128$係数分解能と2次$(1,1)$のスプラインを決定します。
当社のベストネットワークでは、Diceの平均ボリュームテストスコアが92%近くに達し、この先天性心疾患データセットの最先端に達しています。
関連論文リスト
- Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
非コントラストCT脳画像における急性虚血性脳梗塞の容積分画を目的とした自動アルゴリズムを提案する。
我々のディープラーニングアプローチは、人気のある3D U-Net畳み込みニューラルネットワークアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2023-01-17T10:39:39Z) - Orientation-guided Graph Convolutional Network for Bone Surface
Segmentation [51.51690515362261]
骨表面をセグメント化しながら接続性を向上する指向性グラフ畳み込みネットワークを提案する。
提案手法は,接続距離を5.01%向上させる。
論文 参考訳(メタデータ) (2022-06-16T23:01:29Z) - Adaptation to CT Reconstruction Kernels by Enforcing Cross-domain
Feature Maps Consistency [0.06117371161379209]
本研究は,スムーズで訓練し,鋭い再構築カーネル上で試験したモデルにおいて,新型コロナウイルスのセグメンテーション品質の低下を示すものである。
本稿では,F-Consistency(F-Consistency)と呼ばれる,教師なし適応手法を提案する。
論文 参考訳(メタデータ) (2022-03-28T10:00:03Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
QBSPECT(Quantitative bone single-photon emission Computed Tomography)は、平面骨シンチグラフィよりも骨転移をより定量的に評価する可能性を秘めています。
解剖学的領域-関心(ROI)のセグメント化は、まだ専門家による手動の記述に大きく依存しています。
本研究では,QBSPECT画像を病変,骨,背景に分割するための高速かつ堅牢な自動分割法を提案する。
論文 参考訳(メタデータ) (2021-04-17T19:03:52Z) - CNN Based Segmentation of Infarcted Regions in Acute Cerebral Stroke
Patients From Computed Tomography Perfusion Imaging [2.1626699124055504]
血栓溶解療法は脳損傷を軽減できるが、治療窓は狭い。
Computed To Perfusion Imagingは、脳卒中患者の一般的な一次評価ツールです。
完全自動化された4次元畳み込みニューラルネットワークに基づくセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2021-04-07T09:09:13Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - A Spatially Constrained Deep Convolutional Neural Network for Nerve
Fiber Segmentation in Corneal Confocal Microscopic Images using Inaccurate
Annotations [10.761046991755311]
本研究では,スムーズかつロバストな画像分割を実現するために,空間拘束型深部畳み込みニューラルネットワーク(DCNN)を提案する。
提案手法は神経線維分節に対する角膜共焦点顕微鏡(CCM)画像に基づいて評価された。
論文 参考訳(メタデータ) (2020-04-20T16:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。