論文の概要: Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks
- arxiv url: http://arxiv.org/abs/2301.06793v1
- Date: Tue, 17 Jan 2023 10:39:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 14:30:00.348944
- Title: Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks
- Title(参考訳): 3次元畳み込みニューラルネットワークを用いた非コントラストct画像の急性期脳梗塞病変分割
- Authors: A.V.Dobshik, S.K. Verbitskiy, I.A. Pestunov, K.M. Sherman, Yu.N.
Sinyavskiy, A.A. Tulupov, V.B. Berikov
- Abstract要約: 非コントラストCT脳画像における急性虚血性脳梗塞の容積分画を目的とした自動アルゴリズムを提案する。
我々のディープラーニングアプローチは、人気のある3D U-Net畳み込みニューラルネットワークアーキテクチャに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, an automatic algorithm aimed at volumetric segmentation of
acute ischemic stroke lesion in non-contrast computed tomography brain 3D
images is proposed. Our deep-learning approach is based on the popular 3D U-Net
convolutional neural network architecture, which was modified by adding the
squeeze-and-excitation blocks and residual connections. Robust pre-processing
methods were implemented to improve the segmentation accuracy. Moreover, a
specific patches sampling strategy was used to address the large size of
medical images, to smooth out the effect of the class imbalance problem and to
stabilize neural network training. All experiments were performed using
five-fold cross-validation on the dataset containing non-contrast computed
tomography volumetric brain scans of 81 patients diagnosed with acute ischemic
stroke. Two radiology experts manually segmented images independently and then
verified the labeling results for inconsistencies. The quantitative results of
the proposed algorithm and obtained segmentation were measured by the Dice
similarity coefficient, sensitivity, specificity and precision metrics. Our
proposed model achieves an average Dice of $0.628\pm0.033$, sensitivity of
$0.699\pm0.039$, specificity of $0.9965\pm0.0016$ and precision of
$0.619\pm0.036$, showing promising segmentation results.
- Abstract(参考訳): 本稿では,非コントラストct脳3d画像における急性脳梗塞病変のボリューム分割を目的とした自動アルゴリズムを提案する。
我々のディープラーニングアプローチは、一般的な3D U-Net畳み込みニューラルネットワークアーキテクチャに基づいている。
セグメンテーション精度を向上させるため,堅牢な前処理手法が実装された。
さらに,医療画像の大規模化,クラス不均衡問題の影響の円滑化,ニューラルネットワークトレーニングの安定化のために,パッチサンプリング戦略を用いた。
急性期脳卒中と診断された81例の非コントラストct容積脳スキャンを含むデータセット上で,5倍のクロスバリデーションを行った。
2人の放射線医学の専門家が手動で画像を分割し、その結果を不一致で検証した。
提案アルゴリズムと得られたセグメンテーションの定量的結果は,Dice類似度係数,感度,特異度および精度測定値を用いて測定した。
提案モデルでは,平均Diceは0.628\pm0.033$,感度は0.699\pm0.039$,特異度は0.9965\pm0.0016$,精度は0.619\pm0.036$,有望なセグメンテーション結果を示す。
関連論文リスト
- Teeth Localization and Lesion Segmentation in CBCT Images using
SpatialConfiguration-Net and U-Net [0.4915744683251149]
歯の局所化と根尖部病変の分節化は臨床診断と治療計画にとって重要な課題である。
本研究では,2つの畳み込みニューラルネットワークを用いた深層学習手法を提案する。
この方法は、歯の局所化に対する97.3%の精度と、それぞれ0.97および0.88の有望な感度と特異性を達成し、その後の病変検出を行う。
論文 参考訳(メタデータ) (2023-12-19T14:23:47Z) - Attention and Pooling based Sigmoid Colon Segmentation in 3D CT images [11.861208424384046]
シグモイド結腸は憩室炎を治療するための重要な側面である。
本研究はCT画像からシグモイド結腸を抽出するための新しいディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-09-25T04:52:46Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in
Brain Images [59.85702949046042]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
本手法が正常なサンプルに適用された場合,入力画像は大幅な修正を伴わずに再構成されることを確認した。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - The Impact of Loss Functions and Scene Representations for 3D/2D
Registration on Single-view Fluoroscopic X-ray Pose Estimation [1.758213853394712]
我々はまずデジタル再構成ラジオグラフィー(DRR)の効率的な計算のための微分可能プロジェクションレンダリングフレームワークを開発する。
次に, 合成したDRRの画像差を, 地表面の蛍光X線画像に対して定量化する, 様々な候補損失関数を用いて, 反復降下によるポーズ推定を行う。
Mutual Information Loss を用いて,50 人の頭蓋骨の断層X線データを用いて行ったポーズ推定を総合的に評価した結果,DiffProj における識別 (CBCT) とニューラル (NeTT/mNeRF) のシーン表現のどちらを用いたかが示唆された。
論文 参考訳(メタデータ) (2023-08-01T01:12:29Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
臨床ではCT(Computed tomography)とPET(positron emission tomography)が異常リンパ節(LN)を検出する
深層畳み込みニューラルネットワークは、しばしば医療写真にアイテムを分割する。
良質な深層学習手法であるUNetは、縦隔リンパ節の分節と検出のための戦略に基づいて、双線形および全一般化変異(TGV)を用いて修正された。
修正されたUNetはテクスチャの不連続を維持し、ノイズの多い領域を選択し、バックプロパゲーションを通じて適切なバランスポイントを検索し、画像の解像度を再現する。
論文 参考訳(メタデータ) (2022-11-24T02:55:20Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Binary segmentation of medical images using implicit spline
representations and deep learning [1.5293427903448025]
本稿では,暗黙のスプライン表現と深層畳み込みニューラルネットワークを組み合わせた画像分割手法を提案する。
当社のベストネットワークでは、Diceの平均ボリュームテストスコアが92%近くに達し、この先天性心疾患データセットの最先端に達しています。
論文 参考訳(メタデータ) (2021-02-25T10:04:25Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。