Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
- URL: http://arxiv.org/abs/2102.12920v5
- Date: Wed, 27 Mar 2024 09:07:29 GMT
- Title: Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
- Authors: Shaoxiong Ji, Yue Tan, Teemu Saravirta, Zhiqin Yang, Yixin Liu, Lauri Vasankari, Shirui Pan, Guodong Long, Anwar Walid,
- Abstract summary: Federated learning is a new paradigm that decouples data collection and model training via multi-party computation and model aggregation.
We conduct a focused survey of federated learning in conjunction with other learning algorithms.
- Score: 65.06445195580622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. As a flexible learning setting, federated learning has the potential to integrate with other learning frameworks. We conduct a focused survey of federated learning in conjunction with other learning algorithms. Specifically, we explore various learning algorithms to improve the vanilla federated averaging algorithm and review model fusion methods such as adaptive aggregation, regularization, clustered methods, and Bayesian methods. Following the emerging trends, we also discuss federated learning in the intersection with other learning paradigms, termed federated X learning, where X includes multitask learning, meta-learning, transfer learning, unsupervised learning, and reinforcement learning. In addition to reviewing state-of-the-art studies, this paper also identifies key challenges and applications in this field, while also highlighting promising future directions.
Related papers
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
Federated learning has emerged as a promising approach for training machine learning models on decentralized data sources.
We propose a novel framework that combines federated learning with meta-learning techniques to enhance both efficiency and generalization capabilities.
arXiv Detail & Related papers (2023-12-23T08:18:22Z) - Exploring Machine Learning Models for Federated Learning: A Review of
Approaches, Performance, and Limitations [1.1060425537315088]
Federated learning is a distributed learning framework enhanced to preserve the privacy of individuals' data.
In times of crisis, when real-time decision-making is critical, federated learning allows multiple entities to work collectively without sharing sensitive data.
This paper is a systematic review of the literature on privacy-preserving machine learning in the last few years.
arXiv Detail & Related papers (2023-11-17T19:23:21Z) - When Meta-Learning Meets Online and Continual Learning: A Survey [39.53836535326121]
meta-learning is a data-driven approach to optimize the learning algorithm.
Continual learning and online learning, both of which involve incrementally updating a model with streaming data.
This paper organizes various problem settings using consistent terminology and formal descriptions.
arXiv Detail & Related papers (2023-11-09T09:49:50Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - A multifidelity approach to continual learning for physical systems [1.4218223473363278]
We introduce a novel continual learning method based on multifidelity deep neural networks.
This method learns the correlation between the output of previously trained models and the desired output of the model on the current training dataset.
arXiv Detail & Related papers (2023-04-08T03:07:43Z) - Combined Federated and Split Learning in Edge Computing for Ubiquitous
Intelligence in Internet of Things: State of the Art and Future Directions [1.8259323824078306]
Federated learning (FL) and split learning (SL) are two emerging collaborative learning methods that may greatly facilitate ubiquitous intelligence in Internet of Things (IoT)
We review the latest developments in federated learning and split learning and present a survey on the state-of-the-art technologies for combining these two learning methods in an edge computing-based IoT environment.
arXiv Detail & Related papers (2022-07-20T01:31:22Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
Federated Learning is a novel framework that allows multiple devices or institutions to train a machine learning model collaboratively while preserving their data private.
In this work, we formally classify data statistical heterogeneity and review the most remarkable learning strategies that are able to face it.
At the same time, we introduce approaches from other machine learning frameworks, such as Continual Learning, that also deal with data heterogeneity and could be easily adapted to the Federated Learning settings.
arXiv Detail & Related papers (2021-11-26T09:57:11Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
We aim to provide a principled, unifying framework by revisiting and strengthening the connection between meta-learning and traditional supervised learning.
By treating pairs of task-specific data sets and target models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning.
This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning.
arXiv Detail & Related papers (2020-02-03T06:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.