Exploring Machine Learning Models for Federated Learning: A Review of
Approaches, Performance, and Limitations
- URL: http://arxiv.org/abs/2311.10832v1
- Date: Fri, 17 Nov 2023 19:23:21 GMT
- Title: Exploring Machine Learning Models for Federated Learning: A Review of
Approaches, Performance, and Limitations
- Authors: Elaheh Jafarigol, Theodore Trafalis, Talayeh Razzaghi, Mona Zamankhani
- Abstract summary: Federated learning is a distributed learning framework enhanced to preserve the privacy of individuals' data.
In times of crisis, when real-time decision-making is critical, federated learning allows multiple entities to work collectively without sharing sensitive data.
This paper is a systematic review of the literature on privacy-preserving machine learning in the last few years.
- Score: 1.1060425537315088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the growing world of artificial intelligence, federated learning is a
distributed learning framework enhanced to preserve the privacy of individuals'
data. Federated learning lays the groundwork for collaborative research in
areas where the data is sensitive. Federated learning has several implications
for real-world problems. In times of crisis, when real-time decision-making is
critical, federated learning allows multiple entities to work collectively
without sharing sensitive data. This distributed approach enables us to
leverage information from multiple sources and gain more diverse insights. This
paper is a systematic review of the literature on privacy-preserving machine
learning in the last few years based on the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Specifically, we have
presented an extensive review of supervised/unsupervised machine learning
algorithms, ensemble methods, meta-heuristic approaches, blockchain technology,
and reinforcement learning used in the framework of federated learning, in
addition to an overview of federated learning applications. This paper reviews
the literature on the components of federated learning and its applications in
the last few years. The main purpose of this work is to provide researchers and
practitioners with a comprehensive overview of federated learning from the
machine learning point of view. A discussion of some open problems and future
research directions in federated learning is also provided.
Related papers
- Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated learning (FL) offers a compelling framework for training large language models (LLMs)
We focus on machine unlearning, a crucial aspect for complying with privacy regulations like the Right to be Forgotten.
We explore various strategies that enable effective unlearning, such as perturbation techniques, model decomposition, and incremental learning.
arXiv Detail & Related papers (2024-06-14T08:40:58Z) - Private Knowledge Sharing in Distributed Learning: A Survey [50.51431815732716]
The rise of Artificial Intelligence has revolutionized numerous industries and transformed the way society operates.
It is crucial to utilize information in learning processes that are either distributed or owned by different entities.
Modern data-driven services have been developed to integrate distributed knowledge entities into their outcomes.
arXiv Detail & Related papers (2024-02-08T07:18:23Z) - Federated Learning for Generalization, Robustness, Fairness: A Survey
and Benchmark [55.898771405172155]
Federated learning has emerged as a promising paradigm for privacy-preserving collaboration among different parties.
We provide a systematic overview of the important and recent developments of research on federated learning.
arXiv Detail & Related papers (2023-11-12T06:32:30Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Towards Privacy-Aware Causal Structure Learning in Federated Setting [27.5652887311069]
We study a privacy-aware causal structure learning problem in the federated setting.
We propose a novel Federated PC (FedPC) algorithm with two new strategies for preserving data privacy without centralizing data.
arXiv Detail & Related papers (2022-11-13T14:54:42Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z) - Combined Federated and Split Learning in Edge Computing for Ubiquitous
Intelligence in Internet of Things: State of the Art and Future Directions [1.8259323824078306]
Federated learning (FL) and split learning (SL) are two emerging collaborative learning methods that may greatly facilitate ubiquitous intelligence in Internet of Things (IoT)
We review the latest developments in federated learning and split learning and present a survey on the state-of-the-art technologies for combining these two learning methods in an edge computing-based IoT environment.
arXiv Detail & Related papers (2022-07-20T01:31:22Z) - A Comprehensive Survey of Incentive Mechanism for Federated Learning [18.29559568325112]
Federated learning utilizes various resources provided by participants to collaboratively train a global model.
It is quite crucial to inspire more participants to contribute their valuable resources with some payments for federate learning.
arXiv Detail & Related papers (2021-06-27T12:24:15Z) - From Distributed Machine Learning to Federated Learning: A Survey [49.7569746460225]
Federated learning emerges as an efficient approach to exploit distributed data and computing resources.
We propose a functional architecture of federated learning systems and a taxonomy of related techniques.
We present the distributed training, data communication, and security of FL systems.
arXiv Detail & Related papers (2021-04-29T14:15:11Z) - Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning [65.06445195580622]
Federated learning is a new paradigm that decouples data collection and model training via multi-party computation and model aggregation.
We conduct a focused survey of federated learning in conjunction with other learning algorithms.
arXiv Detail & Related papers (2021-02-25T15:18:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.