Machine Learning-Based Optimal Mesh Generation in Computational Fluid
Dynamics
- URL: http://arxiv.org/abs/2102.12923v1
- Date: Thu, 25 Feb 2021 15:25:17 GMT
- Title: Machine Learning-Based Optimal Mesh Generation in Computational Fluid
Dynamics
- Authors: Keefe Huang, Moritz Kr\"ugener, Alistair Brown, Friedrich Menhorn,
Hans-Joachim Bungartz and Dirk Hartmann
- Abstract summary: We propose a machine learning approach to identify optimal mesh densities.
We generate optimized meshes using classical methodologies and propose to train a convolutional network predicting optimal mesh densities.
Using a training set of 20,000 simulations we achieve accuracies of more than 98.7%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computational Fluid Dynamics (CFD) is a major sub-field of engineering.
Corresponding flow simulations are typically characterized by heavy
computational resource requirements. Often, very fine and complex meshes are
required to resolve physical effects in an appropriate manner. Since all CFD
algorithms scale at least linearly with the size of the underlying mesh
discretization, finding an optimal mesh is key for computational efficiency.
One methodology used to find optimal meshes is goal-oriented adaptive mesh
refinement. However, this is typically computationally demanding and only
available in a limited number of tools. Within this contribution, we adopt a
machine learning approach to identify optimal mesh densities. We generate
optimized meshes using classical methodologies and propose to train a
convolutional network predicting optimal mesh densities given arbitrary
geometries. The proposed concept is validated along 2d wind tunnel simulations
with more than 60,000 simulations. Using a training set of 20,000 simulations
we achieve accuracies of more than 98.7%.
Corresponding predictions of optimal meshes can be used as input for any mesh
generation and CFD tool. Thus without complex computations, any CFD engineer
can start his predictions from a high quality mesh.
Related papers
- Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) is an imitation learning problem.
AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh.
We experimentally validate AMBER on 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
arXiv Detail & Related papers (2024-06-20T10:01:22Z) - Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers
for non-stationary and nonlinear simulations on arbitrary meshes [13.41003911618347]
This work introduces PI-MGNs, a hybrid approach that combines PINNs and MGNs to solve non-stationary and nonlinear partial differential equations (PDEs) on arbitrary meshes.
Results show that the model scales well to large and complex meshes, although it is trained on small generic meshes only.
arXiv Detail & Related papers (2024-02-16T13:34:51Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Conformal Predictions Enhanced Expert-guided Meshing with Graph Neural
Networks [8.736819316856748]
This paper presents a machine learning-based scheme that utilize Graph Neural Networks (GNN) and expert guidance to automatically generate CFD meshes for aircraft models.
We introduce a new 3D segmentation algorithm that outperforms two state-of-the-art models, PointNet++ and PointMLP, for surface classification.
We also present a novel approach to project predictions from 3D mesh segmentation models to CAD surfaces using the conformal predictions method.
arXiv Detail & Related papers (2023-08-14T14:39:13Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - MeshDQN: A Deep Reinforcement Learning Framework for Improving Meshes in
Computational Fluid Dynamics [0.0]
MeshDQN is developed as a general purpose deep reinforcement learning framework to iteratively coarsen meshes.
A graph neural network based deep Q network is used to select meshes for removal and solution is used to bypass expensive simulations.
MeshDQN successfully improves meshes for two 2D airfoils.
arXiv Detail & Related papers (2022-12-02T20:22:15Z) - On the optimization and pruning for Bayesian deep learning [1.0152838128195467]
We propose a new adaptive variational Bayesian algorithm to train neural networks on weight space.
The EM-MCMC algorithm allows us to perform optimization and model pruning within one-shot.
Our dense model can reach the state-of-the-art performance and our sparse model perform very well compared to previously proposed pruning schemes.
arXiv Detail & Related papers (2022-10-24T05:18:08Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
Adjoint-based optimization methods are attractive for aerodynamic shape design.
They can become prohibitively expensive when multiple optimization problems are being solved.
We propose a machine learning enabled, surrogate-based framework that replaces the expensive adjoint solver.
arXiv Detail & Related papers (2020-08-15T15:09:21Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.