Where to go next: Learning a Subgoal Recommendation Policy for
Navigation Among Pedestrians
- URL: http://arxiv.org/abs/2102.13073v2
- Date: Fri, 26 Feb 2021 15:20:39 GMT
- Title: Where to go next: Learning a Subgoal Recommendation Policy for
Navigation Among Pedestrians
- Authors: Bruno Brito and Michael Everett and Jonathan P. How and Javier
Alonso-Mora
- Abstract summary: Local trajectory optimization methods, such as model predictive control (MPC), can deal with those changes but require global guidance.
This paper proposes to learn, via deep Reinforcement Learning (RL), an interaction-aware policy that provides long-term guidance to the local planner.
- Score: 40.58684597726312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robotic navigation in environments shared with other robots or humans remains
challenging because the intentions of the surrounding agents are not directly
observable and the environment conditions are continuously changing. Local
trajectory optimization methods, such as model predictive control (MPC), can
deal with those changes but require global guidance, which is not trivial to
obtain in crowded scenarios. This paper proposes to learn, via deep
Reinforcement Learning (RL), an interaction-aware policy that provides
long-term guidance to the local planner. In particular, in simulations with
cooperative and non-cooperative agents, we train a deep network to recommend a
subgoal for the MPC planner. The recommended subgoal is expected to help the
robot in making progress towards its goal and accounts for the expected
interaction with other agents. Based on the recommended subgoal, the MPC
planner then optimizes the inputs for the robot satisfying its kinodynamic and
collision avoidance constraints. Our approach is shown to substantially improve
the navigation performance in terms of number of collisions as compared to
prior MPC frameworks, and in terms of both travel time and number of collisions
compared to deep RL methods in cooperative, competitive and mixed multiagent
scenarios.
Related papers
- Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - Multi-robot Social-aware Cooperative Planning in Pedestrian Environments
Using Multi-agent Reinforcement Learning [2.7716102039510564]
We propose a novel multi-robot social-aware efficient cooperative planner that on the basis of off-policy multi-agent reinforcement learning (MARL)
We adopt temporal-spatial graph (TSG)-based social encoder to better extract the importance of social relation between each robot and the pedestrians in its field of view (FOV)
arXiv Detail & Related papers (2022-11-29T03:38:47Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
arXiv Detail & Related papers (2021-07-09T16:43:12Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement
Learning in Mixed Dynamic Environments [30.407700996710023]
This paper proposes a decentralized partially observable multi-agent path planning with evolutionary reinforcement learning (MAPPER) method.
We decompose the long-range navigation task into many easier sub-tasks under the guidance of a global planner.
Our approach models dynamic obstacles' behavior with an image-based representation and trains a policy in mixed dynamic environments without homogeneity assumption.
arXiv Detail & Related papers (2020-07-30T20:14:42Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.