Multi-Agent Path Planning based on MPC and DDPG
- URL: http://arxiv.org/abs/2102.13283v1
- Date: Fri, 26 Feb 2021 02:57:13 GMT
- Title: Multi-Agent Path Planning based on MPC and DDPG
- Authors: Junxiao Xue and Xiangyan Kong and Bowei Dong and Mingliang Xu
- Abstract summary: We propose a new algorithm combining Model Predictive Control (MPC) with Deep Deterministic Policy Gradient (DDPG)
The DDPG with continuous action space is designed to provide learning and autonomous decision-making capability for robots.
We employ Unity 3D to perform simulation experiments in highly uncertain environment such as aircraft carrier decks and squares.
- Score: 14.793341914236166
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The problem of mixed static and dynamic obstacle avoidance is essential for
path planning in highly dynamic environment. However, the paths formed by grid
edges can be longer than the true shortest paths in the terrain since their
headings are artificially constrained. Existing methods can hardly deal with
dynamic obstacles. To address this problem, we propose a new algorithm
combining Model Predictive Control (MPC) with Deep Deterministic Policy
Gradient (DDPG). Firstly, we apply the MPC algorithm to predict the trajectory
of dynamic obstacles. Secondly, the DDPG with continuous action space is
designed to provide learning and autonomous decision-making capability for
robots. Finally, we introduce the idea of the Artificial Potential Field to set
the reward function to improve convergence speed and accuracy. We employ Unity
3D to perform simulation experiments in highly uncertain environment such as
aircraft carrier decks and squares. The results show that our method has made
great improvement on accuracy by 7%-30% compared with the other methods, and on
the length of the path and turning angle by reducing 100 units and 400-450
degrees compared with DQN (Deep Q Network), respectively.
Related papers
- Deep-Sea A*+: An Advanced Path Planning Method Integrating Enhanced A* and Dynamic Window Approach for Autonomous Underwater Vehicles [1.3807821497779342]
Extreme conditions in the deep-sea environment pose significant challenges for underwater operations.
We propose an advanced path planning methodology that integrates an improved A* algorithm with the Dynamic Window Approach (DWA)
Our proposed method surpasses the traditional A* algorithm in terms of path smoothness, obstacle avoidance, and real-time performance.
arXiv Detail & Related papers (2024-10-22T07:29:05Z) - Path Planning in a dynamic environment using Spherical Particle Swarm Optimization [0.0]
A Dynamic Path Planner (DPP) for UAV using the Spherical Vector-based Particle Swarm optimisation technique is proposed in this study.
The path is constructed as a set of way-points that stands as re-planning checkpoints. Path length, Safety, Attitude and Path Smoothness are all taken into account upon deciding how an optimal path should be.
Four test scenarios are carried out using real digital elevation models. Each test gives different priorities to path length and safety, in order to show how well the SPSO-DPP is capable of generating a safe yet efficient path segments.
arXiv Detail & Related papers (2024-03-19T13:56:34Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
Passable Obstacles Aware (POA) planner is a novel navigation method for two-wheeled robots in a cluttered environment.
Our algorithm allows two-wheeled robots to find a path through passable obstacles.
arXiv Detail & Related papers (2023-07-16T19:44:27Z) - DDPEN: Trajectory Optimisation With Sub Goal Generation Model [70.36888514074022]
In this paper, we produce a novel Differential Dynamic Programming with Escape Network (DDPEN)
We propose to utilize a deep model that takes as an input map of the environment in the form of a costmap together with the desired position.
The model produces possible future directions that will lead to the goal, avoiding local minima which is possible to run in real time conditions.
arXiv Detail & Related papers (2023-01-18T11:02:06Z) - A real-time dynamic obstacle tracking and mapping system for UAV
navigation and collision avoidance with an RGB-D camera [7.77809394151497]
We propose a real-time dynamic obstacle tracking and mapping system for quadcopter obstacle avoidance using an RGB-D camera.
Our methods can successfully track and represent obstacles in dynamic environments in real-time and safely avoid obstacles.
arXiv Detail & Related papers (2022-09-17T05:32:33Z) - Vision-aided UAV navigation and dynamic obstacle avoidance using
gradient-based B-spline trajectory optimization [7.874708385247353]
This paper proposes a gradient-based B-spline trajectory optimization algorithm utilizing the robot's onboard vision.
The proposed optimization first adopts the circle-based guide-point algorithm to approximate the costs and gradients for avoiding static obstacles.
With the vision-detected moving objects, our receding-horizon distance field is simultaneously used to prevent dynamic collisions.
arXiv Detail & Related papers (2022-09-15T02:12:30Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Identification and Avoidance of Static and Dynamic Obstacles on Point
Cloud for UAVs Navigation [7.14505983271756]
We introduce a technique to distinguish dynamic obstacles from static ones with only point cloud input.
A computationally efficient obstacle avoidance motion planning approach is proposed and it is in line with an improved relative velocity method.
The approach is able to avoid both static obstacles and dynamic ones in the same framework.
arXiv Detail & Related papers (2021-05-14T02:44:18Z) - Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial
Vehicles (MAVs) [61.94975011711275]
We propose a geometrically based motion planning technique textquotedblleft RRT*textquotedblright; for this purpose.
In the proposed technique, we modified original RRT* introducing an adaptive search space and a steering function.
We have tested the proposed technique in various simulated environments.
arXiv Detail & Related papers (2020-08-29T09:55:49Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.