Path Planning in a dynamic environment using Spherical Particle Swarm Optimization
- URL: http://arxiv.org/abs/2403.12739v1
- Date: Tue, 19 Mar 2024 13:56:34 GMT
- Title: Path Planning in a dynamic environment using Spherical Particle Swarm Optimization
- Authors: Mohssen E. Elshaar, Mohammed R. Elbalshy, A. Hussien, Mohammed Abido,
- Abstract summary: A Dynamic Path Planner (DPP) for UAV using the Spherical Vector-based Particle Swarm optimisation technique is proposed in this study.
The path is constructed as a set of way-points that stands as re-planning checkpoints. Path length, Safety, Attitude and Path Smoothness are all taken into account upon deciding how an optimal path should be.
Four test scenarios are carried out using real digital elevation models. Each test gives different priorities to path length and safety, in order to show how well the SPSO-DPP is capable of generating a safe yet efficient path segments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently planning an Unmanned Aerial Vehicle (UAV) path is crucial, especially in dynamic settings where potential threats are prevalent. A Dynamic Path Planner (DPP) for UAV using the Spherical Vector-based Particle Swarm Optimisation (SPSO) technique is proposed in this study. The UAV is supposed to go from a starting point to an end point through an optimal path according to some flight criteria. Path length, Safety, Attitude and Path Smoothness are all taken into account upon deciding how an optimal path should be. The path is constructed as a set of way-points that stands as re-planning checkpoints. At each path way-point, threats are allowed some constrained random motion, where their exact positions are updated and fed to the SPSO-solver. Four test scenarios are carried out using real digital elevation models. Each test gives different priorities to path length and safety, in order to show how well the SPSO-DPP is capable of generating a safe yet efficient path segments. Finally, a comparison is made to reveal the persistent overall superior performance of the SPSO, in a dynamic environment, over both the Particle Swarm Optimisation (PSO) and the Genetic Algorithm (GA). The methods are compared directly, by averaging costs over multiple runs, and by considering different challenging levels of obstacle motion. SPSO outperformed both PSO and GA, showcasing cost reductions ranging from 330\% to 675\% compared to both algorithms.
Related papers
- Stochastic Optimal Control Matching [53.156277491861985]
Our work introduces Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for optimal control.
The control is learned via a least squares problem by trying to fit a matching vector field.
Experimentally, our algorithm achieves lower error than all the existing IDO techniques for optimal control.
arXiv Detail & Related papers (2023-12-04T16:49:43Z) - ELRA: Exponential learning rate adaption gradient descent optimization
method [83.88591755871734]
We present a novel, fast (exponential rate), ab initio (hyper-free) gradient based adaption.
The main idea of the method is to adapt the $alpha by situational awareness.
It can be applied to problems of any dimensions n and scales only linearly.
arXiv Detail & Related papers (2023-09-12T14:36:13Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
Passable Obstacles Aware (POA) planner is a novel navigation method for two-wheeled robots in a cluttered environment.
Our algorithm allows two-wheeled robots to find a path through passable obstacles.
arXiv Detail & Related papers (2023-07-16T19:44:27Z) - Efficient Ground Vehicle Path Following in Game AI [77.34726150561087]
This paper presents an efficient path following solution for ground vehicles tailored to game AI.
The proposed path follower is evaluated through a variety of test scenarios in a first-person shooter game.
We achieved a 70% decrease in the total number of stuck events compared to an existing path following solution.
arXiv Detail & Related papers (2023-07-07T04:20:07Z) - GraphWalks: Efficient Shape Agnostic Geodesic Shortest Path Estimation [93.60478281489243]
We propose a learnable network to approximate geodesic paths on 3D surfaces.
The proposed method provides efficient approximations of the shortest paths and geodesic distances estimations.
arXiv Detail & Related papers (2022-05-30T16:22:53Z) - Using Particle Swarm Optimization as Pathfinding Strategy in a Space
with Obstacles [4.899469599577755]
Particle swarm optimization (PSO) is a search algorithm based on and population-based adaptive optimization.
In this paper, a pathfinding strategy is proposed to improve the efficiency of path planning for a broad range of applications.
arXiv Detail & Related papers (2021-12-16T12:16:02Z) - Safety-enhanced UAV Path Planning with Spherical Vector-based Particle
Swarm Optimization [5.076419064097734]
This paper presents a new algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with the problem of path planning for unmanned aerial vehicles (UAVs)
A cost function is first formulated to convert the path planning into an optimization problem that incorporates requirements and constraints for the feasible and safe operation of the UAV.
SPSO is then used to find the optimal path that minimizes the cost function by efficiently searching the configuration space of the UAV.
arXiv Detail & Related papers (2021-04-13T06:45:11Z) - Multi-Agent Path Planning based on MPC and DDPG [14.793341914236166]
We propose a new algorithm combining Model Predictive Control (MPC) with Deep Deterministic Policy Gradient (DDPG)
The DDPG with continuous action space is designed to provide learning and autonomous decision-making capability for robots.
We employ Unity 3D to perform simulation experiments in highly uncertain environment such as aircraft carrier decks and squares.
arXiv Detail & Related papers (2021-02-26T02:57:13Z) - Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial
Vehicles (MAVs) [61.94975011711275]
We propose a geometrically based motion planning technique textquotedblleft RRT*textquotedblright; for this purpose.
In the proposed technique, we modified original RRT* introducing an adaptive search space and a steering function.
We have tested the proposed technique in various simulated environments.
arXiv Detail & Related papers (2020-08-29T09:55:49Z) - Revisiting Bounded-Suboptimal Safe Interval Path Planning [16.24691505268453]
Safe-interval path planning (SIPP) is a powerful algorithm for finding a path in the presence of dynamic obstacles.
In many practical applications of SIPP such as path planning for robots, one would like to trade-off optimality for shorter planning time.
arXiv Detail & Related papers (2020-06-01T18:42:52Z) - Three Dimensional Route Planning for Multiple Unmanned Aerial Vehicles
using Salp Swarm Algorithm [0.0]
Route planning is a series of translation and rotational steps from a given start location to the destination goal location.
The proposed approach improves the average cost and overall time by 1.25% and 6.035% respectively.
arXiv Detail & Related papers (2019-11-24T12:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.