Vision-aided UAV navigation and dynamic obstacle avoidance using
gradient-based B-spline trajectory optimization
- URL: http://arxiv.org/abs/2209.07003v3
- Date: Fri, 12 Jan 2024 23:30:59 GMT
- Title: Vision-aided UAV navigation and dynamic obstacle avoidance using
gradient-based B-spline trajectory optimization
- Authors: Zhefan Xu, Yumeng Xiu, Xiaoyang Zhan, Baihan Chen, Kenji Shimada
- Abstract summary: This paper proposes a gradient-based B-spline trajectory optimization algorithm utilizing the robot's onboard vision.
The proposed optimization first adopts the circle-based guide-point algorithm to approximate the costs and gradients for avoiding static obstacles.
With the vision-detected moving objects, our receding-horizon distance field is simultaneously used to prevent dynamic collisions.
- Score: 7.874708385247353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Navigating dynamic environments requires the robot to generate collision-free
trajectories and actively avoid moving obstacles. Most previous works designed
path planning algorithms based on one single map representation, such as the
geometric, occupancy, or ESDF map. Although they have shown success in static
environments, due to the limitation of map representation, those methods cannot
reliably handle static and dynamic obstacles simultaneously. To address the
problem, this paper proposes a gradient-based B-spline trajectory optimization
algorithm utilizing the robot's onboard vision. The depth vision enables the
robot to track and represent dynamic objects geometrically based on the voxel
map. The proposed optimization first adopts the circle-based guide-point
algorithm to approximate the costs and gradients for avoiding static obstacles.
Then, with the vision-detected moving objects, our receding-horizon distance
field is simultaneously used to prevent dynamic collisions. Finally, the
iterative re-guide strategy is applied to generate the collision-free
trajectory. The simulation and physical experiments prove that our method can
run in real-time to navigate dynamic environments safely. Our software is
available on GitHub as an open-source package.
Related papers
- POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
Passable Obstacles Aware (POA) planner is a novel navigation method for two-wheeled robots in a cluttered environment.
Our algorithm allows two-wheeled robots to find a path through passable obstacles.
arXiv Detail & Related papers (2023-07-16T19:44:27Z) - DDPEN: Trajectory Optimisation With Sub Goal Generation Model [70.36888514074022]
In this paper, we produce a novel Differential Dynamic Programming with Escape Network (DDPEN)
We propose to utilize a deep model that takes as an input map of the environment in the form of a costmap together with the desired position.
The model produces possible future directions that will lead to the goal, avoiding local minima which is possible to run in real time conditions.
arXiv Detail & Related papers (2023-01-18T11:02:06Z) - A real-time dynamic obstacle tracking and mapping system for UAV
navigation and collision avoidance with an RGB-D camera [7.77809394151497]
We propose a real-time dynamic obstacle tracking and mapping system for quadcopter obstacle avoidance using an RGB-D camera.
Our methods can successfully track and represent obstacles in dynamic environments in real-time and safely avoid obstacles.
arXiv Detail & Related papers (2022-09-17T05:32:33Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
We present Neural Motion Fields, a novel object representation which encodes both object point clouds and the relative task trajectories as an implicit value function parameterized by a neural network.
This object-centric representation models a continuous distribution over the SE(3) space and allows us to perform grasping reactively by leveraging sampling-based MPC to optimize this value function.
arXiv Detail & Related papers (2022-06-29T18:47:05Z) - DPMPC-Planner: A real-time UAV trajectory planning framework for complex
static environments with dynamic obstacles [0.9462808515258462]
Safe UAV navigation is challenging due to the complex environment structures, dynamic obstacles, and uncertainties from measurement noises and unpredictable moving obstacle behaviors.
This paper proposes a trajectory planning framework to achieve safe navigation considering complex static environments with dynamic obstacles.
arXiv Detail & Related papers (2021-09-14T23:51:02Z) - Identification and Avoidance of Static and Dynamic Obstacles on Point
Cloud for UAVs Navigation [7.14505983271756]
We introduce a technique to distinguish dynamic obstacles from static ones with only point cloud input.
A computationally efficient obstacle avoidance motion planning approach is proposed and it is in line with an improved relative velocity method.
The approach is able to avoid both static obstacles and dynamic ones in the same framework.
arXiv Detail & Related papers (2021-05-14T02:44:18Z) - ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object
Removal for Static 3D Point Cloud Map Building [0.1474723404975345]
This paper presents a novel static map building method called ERASOR, Egocentric RAtio of pSeudo Occupancy-based dynamic object Removal.
Our approach directs its attention to the nature of most dynamic objects in urban environments being inevitably in contact with the ground.
arXiv Detail & Related papers (2021-03-07T10:29:07Z) - Multi-Agent Path Planning based on MPC and DDPG [14.793341914236166]
We propose a new algorithm combining Model Predictive Control (MPC) with Deep Deterministic Policy Gradient (DDPG)
The DDPG with continuous action space is designed to provide learning and autonomous decision-making capability for robots.
We employ Unity 3D to perform simulation experiments in highly uncertain environment such as aircraft carrier decks and squares.
arXiv Detail & Related papers (2021-02-26T02:57:13Z) - Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial
Vehicles (MAVs) [61.94975011711275]
We propose a geometrically based motion planning technique textquotedblleft RRT*textquotedblright; for this purpose.
In the proposed technique, we modified original RRT* introducing an adaptive search space and a steering function.
We have tested the proposed technique in various simulated environments.
arXiv Detail & Related papers (2020-08-29T09:55:49Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
In recent years, the classical occupancy grid map approach has been extended to dynamic occupancy grid maps.
This paper presents the further development of a previous approach.
The data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied.
arXiv Detail & Related papers (2020-08-09T09:26:30Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.