論文の概要: Multi-task transfer learning for finding actionable information from
crisis-related messages on social media
- arxiv url: http://arxiv.org/abs/2102.13395v1
- Date: Fri, 26 Feb 2021 11:11:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-01 21:35:30.168599
- Title: Multi-task transfer learning for finding actionable information from
crisis-related messages on social media
- Title(参考訳): ソーシャルメディア上の危機関連メッセージから実行可能な情報を見つけるためのマルチタスク転送学習
- Authors: Congcong Wang, David Lillis
- Abstract要約: インシデントストリーム(IS)トラックは、緊急対応のために危機時にソーシャルメディアから重要な情報を見つけることを目的とした研究課題です。
危機関連ツイートのストリームが与えられると、isチャレンジは参加システムに対して、各ツイートにおけるユーザの関心やニーズのタイプを分類するように要求する。
本稿では,この課題に対するマルチタスク転送学習手法について述べる。
- 参考スコア(独自算出の注目度): 3.4392739159262145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Incident streams (IS) track is a research challenge aimed at finding
important information from social media during crises for emergency response
purposes. More specifically, given a stream of crisis-related tweets, the IS
challenge asks a participating system to 1) classify what the types of users'
concerns or needs are expressed in each tweet, known as the information type
(IT) classification task and 2) estimate how critical each tweet is with regard
to emergency response, known as the priority level prediction task. In this
paper, we describe our multi-task transfer learning approach for this
challenge. Our approach leverages state-of-the-art transformer models including
both encoder-based models such as BERT and a sequence-to-sequence based T5 for
joint transfer learning on the two tasks. Based on this approach, we submitted
several runs to the track. The returned evaluation results show that our runs
substantially outperform other participating runs in both IT classification and
priority level prediction.
- Abstract(参考訳): インシデントストリーム(IS)トラックは、緊急対応のために危機時にソーシャルメディアから重要な情報を見つけることを目的とした研究課題です。
より具体的には、危機関連のツイートのストリームを考えると、ISチャレンジは、1)各ツイートで、情報タイプ(IT)分類タスクとして知られているユーザーの懸念やニーズの種類を分類し、2)各ツイートが優先順位レベル予測タスクとして知られている緊急対応に関してどれほど重要かを推定する参加システムを求めます。
本稿では,この課題に対するマルチタスク転送学習手法について述べる。
提案手法では,BERTのようなエンコーダベースモデルとシーケンス・ツー・シーケンスベースT5の両方を含む最先端のトランスフォーマモデルを用いて,2つのタスクの共振学習を行う。
このアプローチに基づいて、トラックにいくつかのランを提出した。
得られた評価結果は,IT分類と優先度レベルの予測の両方において,我々の業績が他の作業よりも大幅に優れていたことを示している。
関連論文リスト
- Double Mixture: Towards Continual Event Detection from Speech [60.33088725100812]
音声イベント検出は、セマンティックイベントと音響イベントの両方のタグ付けを含むマルチメディア検索に不可欠である。
本稿では, 音声イベント検出における主な課題として, 過去の出来事を忘れることなく新たな事象を連続的に統合すること, 音響イベントからの意味のゆがみについて述べる。
本稿では,適応性を向上し,忘れることを防止するために,音声の専門知識と堅牢な記憶機構を融合する新しい手法「ダブルミキチャー」を提案する。
論文 参考訳(メタデータ) (2024-04-20T06:32:00Z) - Multi-Query Focused Disaster Summarization via Instruction-Based
Prompting [3.6199702611839792]
CrisisFACTSは,マルチストリームファクトフィンディングに基づく災害要約の推進を目的としている。
ここでは、いくつかの災害関連事象から重要な事実を抽出できるシステムを開発するよう、参加者に依頼する。
本稿では,この課題に対処する方法について述べる。
論文 参考訳(メタデータ) (2024-02-14T08:22:58Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Zero-shot Item-based Recommendation via Multi-task Product Knowledge
Graph Pre-Training [106.85813323510783]
本稿ではゼロショットアイテムベース勧告(ZSIR)タスクのための新しいパラダイムを提案する。
製品知識グラフ(PKG)のモデルを事前トレーニングして、PLMからアイテム機能を洗練します。
我々は,PKGにおける多型関係,アイテムジェネリック情報と関係のセマンティックな相違,PKGから下流ZSIRタスクへのドメイン差といった,PKG事前学習の課題を3つ挙げる。
論文 参考訳(メタデータ) (2023-05-12T17:38:24Z) - Enhancing Crisis-Related Tweet Classification with Entity-Masked
Language Modeling and Multi-Task Learning [0.30458514384586394]
本稿では,マルチタスク学習問題として,エンティティ・マスク言語モデリングと階層型マルチラベル分類の組み合わせを提案する。
我々は,TREC-ISデータセットからのつぶやきに対する評価を行い,動作可能な情報型に対して最大10%のF1スコアの絶対的なパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2022-11-21T13:54:10Z) - Multimedia Generative Script Learning for Task Planning [58.73725388387305]
我々は,テキストと視覚の両モードの履歴状態を追跡することによって,次のステップを生成するために,マルチメディア生成スクリプト学習という新しいタスクを提案する。
この課題は、画像中の視覚状態をキャプチャするマルチメディアチャレンジ、目に見えないタスクを実行するための誘導チャレンジ、個々のステップで異なる情報をカバーする多様性チャレンジの3つの側面において難しい。
実験の結果,本手法は強いベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2022-08-25T19:04:28Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - UCD-CS at TREC 2021 Incident Streams Track [3.4392739159262145]
TRECインシデントストリーム(IS)トラックは、この目的で編成された研究課題である。
このトラックは参加するシステムに対して、危機に関連するツイートのストリームを人道支援関連の情報タイプに分類するよう求めている。
TREC-IS 2021におけるUCD-CS(University College Dublin School of Computer Science)の参加について報告する。
論文 参考訳(メタデータ) (2021-12-07T14:47:27Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Transformer-based Multi-task Learning for Disaster Tweet Categorisation [2.9112649816695204]
ソーシャルメディアは、人々がタイムリーな方法で情報を流すことを可能にし、危機時に助けを求めるメッセージを投稿する動機となった。
これらのメッセージは、情報タイプに応じて分類される必要がある緊急対応者の状況認識に寄与する。
情報型を分類し,これらのメッセージの優先度を推定するトランスフォーマーベースのマルチタスク学習(MTL)手法を提案する。
論文 参考訳(メタデータ) (2021-10-15T11:13:46Z) - Unsupervised and Interpretable Domain Adaptation to Rapidly Filter
Tweets for Emergency Services [18.57009530004948]
本稿では,TRECインシデントストリームの公開データセットを用いて,危機時に関連するツイートを分類する新しい手法を提案する。
私たちは各タスクに専用の注意層を使用して、モデル解釈可能性を提供しています。
新型コロナウイルスのパンデミックに対するユースケースを提供することで、我々の仕事の実践的な意味を示す。
論文 参考訳(メタデータ) (2020-03-04T06:40:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。