Thermodynamics of ideal gas at Planck scale with strong quantum gravity
measurement
- URL: http://arxiv.org/abs/2103.00089v2
- Date: Fri, 26 Mar 2021 22:40:35 GMT
- Title: Thermodynamics of ideal gas at Planck scale with strong quantum gravity
measurement
- Authors: Lat\'evi Mohamed Lawson
- Abstract summary: We study the dynamics of a free particle confined in an infinite square well potential in one dimension of this space.
We show that the energy spectrum of this system is weakly proportional to the ordinary one of quantum mechanics free of the theory of gravity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: More recently in [J. Phys. A: Math. Theor. 53, 115303 (2020)], we have
introduced a set of noncommutative algebra that describes the space-time at the
Planck scale. The interesting significant result we found is that the
generalized uncertainty principle induced a maximal length of quantum gravity
which has different physical implications to the one of generalized uncertainty
principle with minimal length. The emergence of a maximal length in this theory
revealed strong quantum gravitational effects at this scale and predicted the
detection of gravity particles with low energies. To make evidence of these
predictions, we study the dynamics of a free particle confined in an infinite
square well potential in one dimension of this space. Since the effects of
quantum gravity are strong in this space, we show that the energy spectrum of
this system is weakly proportional to the ordinary one of quantum mechanics
free of the theory of gravity. The states of this particle exhibit proprieties
similar to the standard coherent states which are consequences of quantum
fluctuation at this scale. Then, with the spectrum of this system at hand, we
analyze the thermodynamic quantities within the canonical and microcanonical
ensembles of an ideal gas made up of $N$ indistinguishable particles at the
Planck scale. The results show a complete consistency between both statistical
descriptions. Furthermore, a comparison with the results obtained in the
context of minimal length scenarios and black hole theories indicates that the
maximal length in this theory induces logarithmic corrections of deformed
parameters which are consequences of a strong quantum gravitational effect.
Related papers
- Entropy production due to spacetime fluctuations [0.0]
We consider a non-relativistic quantum system interacting with gravitational waves.
We employ the consistent histories approach to quantum mechanics to define a fluctuation relation for this system.
As a result, thermodynamic entropy must be produced in the system due to its unavoidable interaction with the quantum fluctuations of spacetime.
arXiv Detail & Related papers (2024-07-30T20:52:32Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Decoherence of a composite particle induced by a weak quantized
gravitational field [0.0]
We study the decoherence of a quantum system induced by the quantized gravitational field and by its own quantum nature.
Our results may be important in providing a better understanding of many phenomena like the decoherence induced by the gravitational time-dilation.
arXiv Detail & Related papers (2023-08-14T20:49:16Z) - On free fall of fermions and antifermions [0.0]
We propose a model describing spin-half quantum particles in curved spacetime.
We find that spin precesses in a normal Fermi frame, even in the absence of torsion.
We also find that (elementary) fermions and antifermions are indistinguishable in gravity.
arXiv Detail & Related papers (2022-10-13T15:35:36Z) - Semi-classical gravity phenomenology under the causal-conditional
quantum measurement prescription [9.842140146649346]
We study experimentally measurable signatures of SN theory under the causal-conditional prescription in an optomechanical system.
We find that quantum measurement can induce a classical correlation between two different optical fields via classical gravity.
arXiv Detail & Related papers (2022-07-13T05:09:55Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Gravitational effects in macroscopic quantum systems: a first-principles
analysis [0.0]
We analyze the weak-field limit of General Relativity with matter and its possible quantisations.
This analysis aims towards a predictive quantum theory to provide a first-principles description of gravitational effects in macroscopic quantum systems.
arXiv Detail & Related papers (2021-03-14T21:29:11Z) - Position-dependent mass in strong quantum gravitational background
fields [0.0]
We study the dynamics of a particle with position-dependent mass trapped in an infinite square well.
We show that, by increasing the quantum gravitational effect, the PDM of the particle increases and induces deformations of the quantum energy levels.
arXiv Detail & Related papers (2020-12-18T23:18:32Z) - Experimental measurement of the divergent quantum metric of an
exceptional point [10.73176455098217]
We report the first experimental measurement of the quantum metric in a non-Hermitian system.
The specific platform under study is an organic microcavity with exciton-polariton eigenstates, which demonstrate exceptional points.
arXiv Detail & Related papers (2020-11-24T11:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.