論文の概要: A Brief Introduction to Generative Models
- arxiv url: http://arxiv.org/abs/2103.00265v1
- Date: Sat, 27 Feb 2021 16:49:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 17:41:32.825641
- Title: A Brief Introduction to Generative Models
- Title(参考訳): ジェネラティブモデルの概要
- Authors: Alex Lamb
- Abstract要約: 我々は、機械学習の中心課題として生成モデリングを導入し、動機づける。
KL-発散の最小化としてどのように解釈できるかを概説する。
本稿では,推定分布と実データ分布の差異を考察する代替逆アプローチを検討する。
- 参考スコア(独自算出の注目度): 8.031257560764336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce and motivate generative modeling as a central task for machine
learning and provide a critical view of the algorithms which have been proposed
for solving this task. We overview how generative modeling can be defined
mathematically as trying to make an estimating distribution the same as an
unknown ground truth distribution. This can then be quantified in terms of the
value of a statistical divergence between the two distributions. We outline the
maximum likelihood approach and how it can be interpreted as minimizing
KL-divergence. We explore a number of approaches in the maximum likelihood
family, while discussing their limitations. Finally, we explore the alternative
adversarial approach which involves studying the differences between an
estimating distribution and a real data distribution. We discuss how this
approach can give rise to new divergences and methods that are necessary to
make adversarial learning successful. We also discuss new evaluation metrics
which are required by the adversarial approach.
- Abstract(参考訳): 本稿では,機械学習の中心的なタスクとして生成モデリングの導入と動機付けを行い,この課題に提案されているアルゴリズムの批判的視点を提供する。
生成的モデリングが数学的にどう定義できるかを,未知の基底真理分布と同じ分布を推定する試みとして概説する。
これは2つの分布の間の統計的発散の値の観点から定量化することができる。
KL-発散の最小化としてどのように解釈できるかを概説する。
我々は、限界を議論しながら、maximum likelihood familyにおける多くのアプローチを探求する。
最後に, 推定分布と実データ分布との差異を考察する, 代替逆アプローチについて検討する。
このアプローチが、敵対的な学習を成功させるために必要な新しい分岐と方法を生み出す方法について議論します。
また,敵対的アプローチが要求する新たな評価指標についても論じる。
関連論文リスト
- Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
本稿では, 抽出可能かつ効率的な対実表現推定のための重要サンプリング手法を提案する。
対物推定器の共通上限を最小化することにより、分散最小化問題を条件分布学習問題に変換する。
構造因果モデル (Structure Causal Models, SCM) の様々なタイプと設定による実験による理論的結果の検証と, 対実推定タスクにおける性能の実証を行った。
論文 参考訳(メタデータ) (2024-10-17T03:08:28Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - A Distributional Analogue to the Successor Representation [54.99439648059807]
本稿では,分散強化学習のための新しい手法を提案する。
学習プロセスにおける遷移構造と報酬のクリーンな分離を解明する。
実例として,ゼロショットリスクに敏感な政策評価が可能であることを示す。
論文 参考訳(メタデータ) (2024-02-13T15:35:24Z) - Learning and Predicting Multimodal Vehicle Action Distributions in a
Unified Probabilistic Model Without Labels [26.303522885475406]
本稿では、個別の車両行動の代表集合を学習し、特定のシナリオに応じて各行動の確率を予測する統一確率モデルを提案する。
我々のモデルはまた、シナリオ上で条件付けられた連続的な軌道上の分布を推定することができ、そのシナリオで実行された場合、それぞれの離散アクションがどのように見えるかを表現します。
論文 参考訳(メタデータ) (2022-12-14T04:01:19Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
トラリミー予測は将来の力学のマルチモーダルな性質を捉えるジレンマと対立する。
本研究では,パーソナライズされた動作パターンを予測するDisDisDis(Disdis)手法を提案する。
本手法は,プラグイン・アンド・プレイモジュールとして既存のマルチモーダル予測モデルと統合することができる。
論文 参考訳(メタデータ) (2021-07-29T17:42:12Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
連続確率変数間の相互情報を推定することは、高次元データにとってしばしば難解で困難である。
近年の進歩は、相互情報の変動的下界を最適化するためにニューラルネットワークを活用している。
提案手法は,データサンプルペアが結合分布から引き出される確率を提供する分類器の訓練に基づく。
論文 参考訳(メタデータ) (2020-10-05T04:19:27Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
定常ステップサイズに対する強化学習アルゴリズムの理論解析に対する分布的アプローチを提案する。
本稿では,TD($lambda$)や$Q$-Learningのような値ベースの手法が,関数の分布空間で制約のある更新ルールを持つことを示す。
論文 参考訳(メタデータ) (2020-03-27T05:13:29Z) - Scalable Approximate Inference and Some Applications [2.6541211006790983]
本稿では,近似推論のための新しいフレームワークを提案する。
提案する4つのアルゴリズムは,Steinの手法の最近の計算進歩に動機付けられている。
シミュレーションおよび実データを用いた結果から,アルゴリズムの統計的効率と適用性を示す。
論文 参考訳(メタデータ) (2020-03-07T04:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。