Constrained Differentially Private Federated Learning for Low-bandwidth
Devices
- URL: http://arxiv.org/abs/2103.00342v1
- Date: Sat, 27 Feb 2021 22:25:06 GMT
- Title: Constrained Differentially Private Federated Learning for Low-bandwidth
Devices
- Authors: Raouf Kerkouche and Gergely \'Acs and Claude Castelluccia and Pierre
Genev\`es
- Abstract summary: This paper presents a novel privacy-preserving federated learning scheme.
It provides theoretical privacy guarantees, as it is based on Differential Privacy.
It reduces the upstream and downstream bandwidth by up to 99.9% compared to standard federated learning.
- Score: 1.1470070927586016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning becomes a prominent approach when different entities want
to learn collaboratively a common model without sharing their training data.
However, Federated learning has two main drawbacks. First, it is quite
bandwidth inefficient as it involves a lot of message exchanges between the
aggregating server and the participating entities. This bandwidth and
corresponding processing costs could be prohibitive if the participating
entities are, for example, mobile devices. Furthermore, although federated
learning improves privacy by not sharing data, recent attacks have shown that
it still leaks information about the training data. This paper presents a novel
privacy-preserving federated learning scheme. The proposed scheme provides
theoretical privacy guarantees, as it is based on Differential Privacy.
Furthermore, it optimizes the model accuracy by constraining the model learning
phase on few selected weights. Finally, as shown experimentally, it reduces the
upstream and downstream bandwidth by up to 99.9% compared to standard federated
learning, making it practical for mobile systems.
Related papers
- Can Public Large Language Models Help Private Cross-device Federated Learning? [58.05449579773249]
We study (differentially) private federated learning (FL) of language models.
Public data has been used to improve privacy-utility trade-offs for both large and small language models.
We propose a novel distribution matching algorithm with theoretical grounding to sample public data close to private data distribution.
arXiv Detail & Related papers (2023-05-20T07:55:58Z) - FedDBL: Communication and Data Efficient Federated Deep-Broad Learning
for Histopathological Tissue Classification [65.7405397206767]
We propose Federated Deep-Broad Learning (FedDBL) to achieve superior classification performance with limited training samples and only one-round communication.
FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications.
Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk.
arXiv Detail & Related papers (2023-02-24T14:27:41Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
We propose a novel Federated Zero-Shot Learning FedZSL framework.
FedZSL learns a central model from the decentralized data residing on edge devices.
The effectiveness and robustness of FedZSL are demonstrated by extensive experiments conducted on three zero-shot benchmark datasets.
arXiv Detail & Related papers (2022-09-05T14:49:34Z) - Practical Vertical Federated Learning with Unsupervised Representation
Learning [47.77625754666018]
Federated learning enables multiple parties to collaboratively train a machine learning model without sharing their raw data.
We propose a novel communication-efficient vertical federated learning algorithm named FedOnce, which requires only one-shot communication among parties.
Our privacy-preserving technique significantly outperforms the state-of-the-art approaches under the same privacy budget.
arXiv Detail & Related papers (2022-08-13T08:41:32Z) - Comparative assessment of federated and centralized machine learning [0.0]
Federated Learning (FL) is a privacy preserving machine learning scheme, where training happens with data federated across devices.
In this paper, we discuss the various factors that affect the federated learning training, because of the non-IID distributed nature of the data.
We show that federated learning does have an advantage in cost when the model sizes to be trained are not reasonably large.
arXiv Detail & Related papers (2022-02-03T11:20:47Z) - Compression Boosts Differentially Private Federated Learning [0.7742297876120562]
Federated learning allows distributed entities to train a common model collaboratively without sharing their own data.
It remains vulnerable to various inference and reconstruction attacks where a malicious entity can learn private information about the participants' training data from the captured gradients.
We show experimentally, using 2 datasets, that our privacy-preserving proposal can reduce the communication costs by up to 95% with only a negligible performance penalty compared to traditional non-private federated learning schemes.
arXiv Detail & Related papers (2020-11-10T13:11:03Z) - Federated Learning in Adversarial Settings [0.8701566919381224]
Federated learning scheme provides different trade-offs between robustness, privacy, bandwidth efficiency, and model accuracy.
We show that this extension performs as efficiently as the non-private but robust scheme, even with stringent privacy requirements.
This suggests a possible fundamental trade-off between Differential Privacy and robustness.
arXiv Detail & Related papers (2020-10-15T14:57:02Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
Federated learning is a machine learning setting where a set of edge devices collaboratively train a model under the orchestration of a central server.
In this paper, we develop a federated learning approach that addresses the privacy challenge without much degradation on model utility.
We provide a tight end-to-end privacy guarantee of our approach and analyze its theoretical convergence rates.
arXiv Detail & Related papers (2020-03-30T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.