Can Public Large Language Models Help Private Cross-device Federated Learning?
- URL: http://arxiv.org/abs/2305.12132v2
- Date: Fri, 12 Apr 2024 21:01:12 GMT
- Title: Can Public Large Language Models Help Private Cross-device Federated Learning?
- Authors: Boxin Wang, Yibo Jacky Zhang, Yuan Cao, Bo Li, H. Brendan McMahan, Sewoong Oh, Zheng Xu, Manzil Zaheer,
- Abstract summary: We study (differentially) private federated learning (FL) of language models.
Public data has been used to improve privacy-utility trade-offs for both large and small language models.
We propose a novel distribution matching algorithm with theoretical grounding to sample public data close to private data distribution.
- Score: 58.05449579773249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study (differentially) private federated learning (FL) of language models. The language models in cross-device FL are relatively small, which can be trained with meaningful formal user-level differential privacy (DP) guarantees when massive parallelism in training is enabled by the participation of a moderate size of users. Recently, public data has been used to improve privacy-utility trade-offs for both large and small language models. In this work, we provide a systematic study of using large-scale public data and LLMs to help differentially private training of on-device FL models, and further improve the privacy-utility tradeoff by techniques of distillation. Moreover, we propose a novel distribution matching algorithm with theoretical grounding to sample public data close to private data distribution, which significantly improves the sample efficiency of (pre-)training on public data. The proposed method is efficient and effective for training private models by taking advantage of public data, especially for customized on-device architectures that do not have ready-to-use pre-trained models.
Related papers
- Prompt Public Large Language Models to Synthesize Data for Private On-device Applications [5.713077600587505]
This paper investigates how large language models (LLMs) trained on public data can improve the quality of pre-training data for the on-device language models trained with DP and FL.
The model pre-trained on our synthetic dataset achieves relative improvement of 19.0% and 22.8% in next word prediction accuracy.
Our experiments demonstrate the strengths of LLMs in synthesizing data close to the private distribution even without accessing the private data.
arXiv Detail & Related papers (2024-04-05T19:14:14Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - FedPDC:Federated Learning for Public Dataset Correction [1.5533842336139065]
Federated learning has lower classification accuracy than traditional machine learning in Non-IID scenarios.
New algorithm FedPDC is proposed to optimize the aggregation mode of local models and the loss function of local training.
In many benchmark experiments, FedPDC can effectively improve the accuracy of the global model in the case of extremely unbalanced data distribution.
arXiv Detail & Related papers (2023-02-24T08:09:23Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
We question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving.
We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy.
We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
arXiv Detail & Related papers (2022-12-13T10:41:12Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - PFA: Privacy-preserving Federated Adaptation for Effective Model
Personalization [6.66389628571674]
Federated learning (FL) has become a prevalent distributed machine learning paradigm with improved privacy.
This paper introduces a new concept called federated adaptation, targeting at adapting the trained model in a federated manner to achieve better personalization results.
We propose PFA, a framework to accomplish Privacy-preserving Federated Adaptation.
arXiv Detail & Related papers (2021-03-02T08:07:34Z) - Constrained Differentially Private Federated Learning for Low-bandwidth
Devices [1.1470070927586016]
This paper presents a novel privacy-preserving federated learning scheme.
It provides theoretical privacy guarantees, as it is based on Differential Privacy.
It reduces the upstream and downstream bandwidth by up to 99.9% compared to standard federated learning.
arXiv Detail & Related papers (2021-02-27T22:25:06Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
Federated learning is a method of training models on private data distributed over multiple devices.
We propose a new federated learning algorithm that jointly learns compact local representations on each device.
We also evaluate on the task of personalized mood prediction from real-world mobile data where privacy is key.
arXiv Detail & Related papers (2020-01-06T12:40:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.