論文の概要: High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces
- arxiv url: http://arxiv.org/abs/2103.00349v1
- Date: Sat, 27 Feb 2021 23:06:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 17:19:14.251739
- Title: High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces
- Title(参考訳): Sparse Axis-Aligned Subspaceを用いた高次元ベイズ最適化
- Authors: David Eriksson and Martin Jankowiak
- Abstract要約: スパース軸整列部分空間上で定義される代理モデルは、柔軟性とパーシモニーの間に魅力的な妥協をもたらすと我々は主張する。
提案手法は,ハミルトニアンモンテカルロを推論に用い,未知の目的関数のモデル化に関連するスパース部分空間を迅速に同定できることを実証する。
- 参考スコア(独自算出の注目度): 14.03847432040056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization (BO) is a powerful paradigm for efficient optimization
of black-box objective functions. High-dimensional BO presents a particular
challenge, in part because the curse of dimensionality makes it difficult to
define as well as do inference over a suitable class of surrogate models. We
argue that Gaussian process surrogate models defined on sparse axis-aligned
subspaces offer an attractive compromise between flexibility and parsimony. We
demonstrate that our approach, which relies on Hamiltonian Monte Carlo for
inference, can rapidly identify sparse subspaces relevant to modeling the
unknown objective function, enabling sample-efficient high-dimensional BO. In
an extensive suite of experiments comparing to existing methods for
high-dimensional BO we demonstrate that our algorithm, Sparse Axis-Aligned
Subspace BO (SAASBO), achieves excellent performance on several synthetic and
real-world problems without the need to set problem-specific hyperparameters.
- Abstract(参考訳): ベイズ最適化(BO)はブラックボックスの目的関数を効率的に最適化するための強力なパラダイムである。
高次元BOは、次元の呪いが定義を困難にし、適切なクラスのサーロゲートモデルに対する推論を行うため、特定の課題を提示します。
スパース軸整列部分空間上で定義されるガウス過程は、柔軟性とパーシモニーの間に魅力的な妥協をもたらすと論じる。
提案手法は,ハミルトニアンモンテカルロを推論に用い,未知の目的関数のモデル化に関連するスパース部分空間を迅速に同定し,サンプル効率の高い高次元boを実現する。
既存の高次元BO法と比較した一連の実験では、アルゴリズムであるSparse Axis-Aligned Subspace BO(SAASBO)が問題固有のハイパーパラメータを設定することなく、いくつかの合成および実世界の問題に対して優れた性能を発揮することを実証した。
関連論文リスト
- An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
BOを高次元設定に拡張するための2段階最適化フレームワークを提案する。
私たちのアルゴリズムは、これらのステップを並列またはシーケンスで操作する柔軟性を提供します。
数値実験により,困難シナリオにおける本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-03-08T16:21:08Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
本稿では,大規模言語モデル(LLM)の能力をベイズ最適化に組み込む新しいアプローチであるLLAMBOを提案する。
高いレベルでは、自然言語のBO問題を枠組み化し、LLMが歴史的評価に照らした有望な解を反復的に提案し、評価することを可能にする。
以上の結果から,LLAMBOはゼロショットウォームスタートに有効であり,サロゲートモデリングや候補サンプリングの促進,特に観察が不十分な場合の探索の初期段階において有効であることが示唆された。
論文 参考訳(メタデータ) (2024-02-06T11:44:06Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Predictive Modeling through Hyper-Bayesian Optimization [60.586813904500595]
本稿では,モデル選択とBOを統合する新しい手法を提案する。
このアルゴリズムは、モデル空間のBOと関数空間のBOの間を行き来する。
サンプル効率の改善に加えて、ブラックボックス機能に関する情報も出力する。
論文 参考訳(メタデータ) (2023-08-01T04:46:58Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
本稿では,確率化された先行するニューラルネットワークの自己ストラップ型アンサンブルに基づくBOとシーケンシャル意思決定のためのディープラーニングフレームワークを提案する。
提案手法は,高次元ベクトル空間や無限次元関数空間の値を取る場合においても,設計変数と関心量の関数的関係を近似することができることを示す。
提案手法をBOの最先端手法に対して検証し,高次元出力の課題に対して優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-14T18:55:21Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - A model aggregation approach for high-dimensional large-scale
optimization [2.1104930506758275]
本研究では,高次元大規模最適化問題を効率的に解くため,ベイズ最適化(MamBO)アルゴリズムにおけるモデル集約手法を提案する。
MamBOはサブサンプリングとサブスペース埋め込みを組み合わせることで、高次元と大規模問題に一括して対処する。
提案手法は,これらの低次元サロゲートモデルリスクを低減し,BOアルゴリズムのロバスト性を向上させる。
論文 参考訳(メタデータ) (2022-05-16T08:58:42Z) - High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds [0.0]
本研究では,様々な領域によく現れる非ユークリッド探索空間の幾何学を利用して,構造保存写像を学習することを提案する。
我々のアプローチは、ネストした多様体の埋め込みを共同で学習する幾何学的ガウス過程と、潜在空間における目的関数の表現を特徴付ける。
論文 参考訳(メタデータ) (2020-10-21T11:24:11Z) - Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search
Spaces [63.22864716473051]
本稿では,反復により探索空間を拡大(およびシフト)する新しいBOアルゴリズムを提案する。
理論的には、どちらのアルゴリズムにおいても、累積的後悔は線形以下の速度で増大する。
論文 参考訳(メタデータ) (2020-09-05T14:24:40Z) - An Asymptotically Optimal Multi-Armed Bandit Algorithm and
Hyperparameter Optimization [48.5614138038673]
本稿では,高パラメータ探索評価のシナリオにおいて,SS (Sub-Sampling) と呼ばれる効率的で堅牢な帯域幅に基づくアルゴリズムを提案する。
また,BOSSと呼ばれる新しいパラメータ最適化アルゴリズムを開発した。
実験的な研究は、SSの理論的議論を検証し、多くのアプリケーションにおけるBOSSの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-07-11T03:15:21Z) - Misspecification-robust likelihood-free inference in high dimensions [13.934999364767918]
本稿では,ベイズ最適化に基づく近似離散関数の確率的手法による拡張を提案する。
提案手法は,高次元パラメータ空間に対する計算スケーラビリティを,各パラメータの別個の取得関数と相違点を用いて達成する。
本手法は,100次元空間における標準例による計算効率のよい推論を成功させ,既存のモジュール化ABC法と比較した。
論文 参考訳(メタデータ) (2020-02-21T16:06:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。