論文の概要: On the Utility of Gradient Compression in Distributed Training Systems
- arxiv url: http://arxiv.org/abs/2103.00543v1
- Date: Sun, 28 Feb 2021 15:58:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 15:56:46.165336
- Title: On the Utility of Gradient Compression in Distributed Training Systems
- Title(参考訳): 分散トレーニングシステムにおける勾配圧縮の有用性について
- Authors: Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, Dimitris
Papailiopoulos
- Abstract要約: 本稿では,勾配圧縮法の有効性を評価し,そのスケーラビリティを同期データ並列sgdの最適化実装と比較する。
意外なことに、勾配圧縮によって引き起こされる計算オーバーヘッドのため、バニラデータ並列トレーニングのネットスピードアップは、負でなくても限界である。
- 参考スコア(独自算出の注目度): 9.017890174185872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid growth in data sets and the scale of neural network architectures have
rendered distributed training a necessity. A rich body of prior work has
highlighted the existence of communication bottlenecks in synchronous
data-parallel training.To alleviate these bottlenecks, the machine learning
community has largely focused on developing gradient and model compression
methods. In parallel, the systems community has adopted several High
Performance Computing (HPC)techniques to speed up distributed training. In this
work, we evaluate the efficacy of gradient compression methods and compare
their scalability with optimized implementations of synchronous data-parallel
SGD. Surprisingly, we observe that due to computation overheads introduced by
gradient compression, the net speedup over vanilla data-parallel training is
marginal, if not negative. We conduct an extensive investigation to identify
the root causes of this phenomenon, and offer a performance model that can be
used to identify the benefits of gradient compression for a variety of system
setups. Based on our analysis, we propose a list of desirable properties that
gradient compression methods should satisfy, in order for them to provide a
meaningful end-to-end speedup
- Abstract(参考訳): データセットの急速な成長とニューラルネットワークアーキテクチャのスケールは、分散トレーニングを必要としている。
同期データ並列トレーニングにおける通信ボトルネックの存在を強調し、これらのボトルネックを軽減するため、機械学習コミュニティはグラデーションとモデルの圧縮メソッドの開発に重点を置いています。
並行して、システムコミュニティは分散トレーニングをスピードアップするためにいくつかのハイパフォーマンスコンピューティング(hpc)技術を採用した。
本研究では,勾配圧縮法の有効性を評価し,そのスケーラビリティを同期データ並列sgdの最適化実装と比較する。
意外なことに、勾配圧縮によって引き起こされる計算オーバーヘッドのため、バニラデータ並列トレーニングのネットスピードアップは、負でなくても限界である。
我々は,この現象の根本原因を特定するために広範囲な調査を行い,様々なシステム構成に対する勾配圧縮の利点を特定するために使用できる性能モデルを提供する。
解析に基づいて, 勾配圧縮法が満足すべき望ましい特性のリストを提案し, それらが有意義なエンドツーエンドの高速化を実現する。
関連論文リスト
- Accelerating Distributed Deep Learning using Lossless Homomorphic
Compression [17.654138014999326]
本稿では,ワーカレベルの圧縮とネットワーク内アグリゲーションを効果的に融合する新しい圧縮アルゴリズムを提案する。
集約のスループットが6.33$times$改善され、イテレーションごとのトレーニング速度が3.74$times$アップします。
論文 参考訳(メタデータ) (2024-02-12T09:57:47Z) - Does compressing activations help model parallel training? [64.59298055364336]
モデル並列性に対する圧縮法の有効性に関する実験的検討を行った。
圧縮アルゴリズムの3つの共通クラスを実装し,評価する。
我々は160以上の設定と8つの一般的なデータセットでこれらの手法を評価した。
論文 参考訳(メタデータ) (2023-01-06T18:58:09Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
本稿では,デバイス間のロードバランシングのための新しいデバイス・ツー・デバイス(D2D)支援型符号化学習手法(D2D-CFL)を提案する。
最小処理時間を達成するための最適圧縮率を導出し、収束時間との接続を確立する。
提案手法は,ユーザが継続的にトレーニングデータを生成するリアルタイム協調アプリケーションに有用である。
論文 参考訳(メタデータ) (2021-11-26T18:44:59Z) - Quantization for Distributed Optimization [0.0]
本稿では,バニラSGDの性能を維持しながら通信オーバヘッドを大幅に低減する全リデュース勾配対応圧縮方式を提案する。
我々の圧縮手法は、現在ディープラーニングフレームワークによって提供されている工法よりも優れています。
論文 参考訳(メタデータ) (2021-09-26T05:16:12Z) - Compressed Communication for Distributed Training: Adaptive Methods and
System [13.244482588437972]
通信オーバーヘッドは、分散機械学習システムのスケーラビリティを著しく妨げます。
近年,通信オーバーヘッドを低減するために勾配圧縮を使うことへの関心が高まっている。
本稿では, グラデーション圧縮を用いた新しい適応勾配法を提案する。
論文 参考訳(メタデータ) (2021-05-17T13:41:47Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z) - Stochastic Optimization with Laggard Data Pipelines [65.20044914532221]
共通最適化手法の「データ抽出」拡張は同期手法よりも優れた性能を示すことを示す。
具体的には、ミニバッチによる凸最適化において、データエコーは、最適統計率を維持しながら収束率の曲率に支配される部分の高速化をもたらすことを示す。
論文 参考訳(メタデータ) (2020-10-26T14:55:31Z) - Sparse Communication for Training Deep Networks [56.441077560085475]
同期勾配降下(SGD)は、ディープラーニングモデルの分散トレーニングに最もよく用いられる手法である。
このアルゴリズムでは、各ワーカーは他のワーカーと局所勾配を共有し、すべてのワーカーの平均勾配を使ってパラメータを更新する。
いくつかの圧縮スキームについて検討し、3つの重要なパラメータが性能に与える影響を同定する。
論文 参考訳(メタデータ) (2020-09-19T17:28:11Z) - DaSGD: Squeezing SGD Parallelization Performance in Distributed Training
Using Delayed Averaging [4.652668321425679]
ミニバッチ勾配降下(SGD)アルゴリズムでは、作業者は前方/後方の伝搬を停止する必要がある。
DaSGDはSGDとフォワード/バックの伝搬を並列化し、通信オーバーヘッドの100%を隠蔽する。
論文 参考訳(メタデータ) (2020-05-31T05:43:50Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。