論文の概要: Quantization for Distributed Optimization
- arxiv url: http://arxiv.org/abs/2109.12497v1
- Date: Sun, 26 Sep 2021 05:16:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 15:05:14.962828
- Title: Quantization for Distributed Optimization
- Title(参考訳): 分散最適化のための量子化
- Authors: Vineeth S
- Abstract要約: 本稿では,バニラSGDの性能を維持しながら通信オーバヘッドを大幅に低減する全リデュース勾配対応圧縮方式を提案する。
我々の圧縮手法は、現在ディープラーニングフレームワークによって提供されている工法よりも優れています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Massive amounts of data have led to the training of large-scale machine
learning models on a single worker inefficient. Distributed machine learning
methods such as Parallel-SGD have received significant interest as a solution
to tackle this problem. However, the performance of distributed systems does
not scale linearly with the number of workers due to the high network
communication cost for synchronizing gradients and parameters. Researchers have
proposed techniques such as quantization and sparsification to alleviate this
problem by compressing the gradients. Most of the compression schemes result in
compressed gradients that cannot be directly aggregated with efficient
protocols such as all-reduce. In this paper, we present a set of all-reduce
compatible gradient compression schemes which significantly reduce the
communication overhead while maintaining the performance of vanilla SGD. We
present the results of our experiments with the CIFAR10 dataset and
observations derived during the process. Our compression methods perform better
than the in-built methods currently offered by the deep learning frameworks.
Code is available at the repository:
\url{https://github.com/vineeths96/Gradient-Compression}.
- Abstract(参考訳): 大量のデータが、単一のワーカー非効率で大規模な機械学習モデルのトレーニングにつながった。
Parallel-SGDのような分散機械学習手法はこの問題に対処するためのソリューションとして大きな関心を集めている。
しかしながら、分散システムの性能は、勾配とパラメータを同期するネットワーク通信コストが高いため、労働者数と線形にスケールしない。
研究者たちは、勾配を圧縮することでこの問題を軽減するために量子化やスパーシフィケーションのような手法を提案している。
ほとんどの圧縮スキームは圧縮勾配となり、all-reduceのような効率的なプロトコルで直接集約できない。
本稿では,バニラSGDの性能を維持しながら通信オーバヘッドを大幅に低減する,全リデューサ互換の勾配圧縮方式を提案する。
CIFAR10データセットによる実験結果とプロセス中に導出された観測結果について述べる。
当社の圧縮手法は、ディープラーニングフレームワークが現在提供しているビルトインメソッドよりも優れています。
コードはリポジトリで入手できる。 \url{https://github.com/vineeths96/Gradient-Compression}。
関連論文リスト
- LoCo: Low-Bit Communication Adaptor for Large-scale Model Training [63.040522637816906]
低ビット通信は、しばしば圧縮情報損失によってトレーニング品質が低下する。
本稿では,ローカルGPUノードを補償するLoCo(Lo-bit Communication Adaptor)を提案する。
実験結果から,Megatron-LMやPyTorchs FSDPといった大規模トレーニングモデルフレームワークの移動により,LoCoは圧縮通信効率を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-07-05T13:01:36Z) - Beyond Throughput and Compression Ratios: Towards High End-to-end Utility of Gradient Compression [13.255861297820326]
勾配圧縮は、通信された勾配データ量を減らすことができる。
実際には、勾配圧縮スキームはトレーニングプロセスの加速を達成せず、精度を保っている。
従来の勾配圧縮システムにおける共通問題と評価手法について述べる。
論文 参考訳(メタデータ) (2024-07-01T15:32:28Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
我々はスケッチを利用した新しい分散Adam型アルゴリズムのクラス(例:SketchedAMSGrad)を提案する。
我々の新しいアルゴリズムは、反復毎に$O(frac1sqrtnT + frac1(k/d)2 T)$の高速収束率を$O(k log(d))$の通信コストで達成する。
論文 参考訳(メタデータ) (2022-10-14T01:42:05Z) - Wyner-Ziv Gradient Compression for Federated Learning [4.619828919345114]
グラディエント圧縮は, 圧縮勾配を伝送することで通信負荷を低減する効果的な方法である。
本稿では、歴史的勾配を用いて勾配を圧縮するフェデレート学習のための実用的な勾配圧縮手法を提案する。
また、実際のデータセットに勾配量子化法を実装し、提案手法の性能は従来の手法よりも優れている。
論文 参考訳(メタデータ) (2021-11-16T07:55:43Z) - Compressed Communication for Distributed Training: Adaptive Methods and
System [13.244482588437972]
通信オーバーヘッドは、分散機械学習システムのスケーラビリティを著しく妨げます。
近年,通信オーバーヘッドを低減するために勾配圧縮を使うことへの関心が高まっている。
本稿では, グラデーション圧縮を用いた新しい適応勾配法を提案する。
論文 参考訳(メタデータ) (2021-05-17T13:41:47Z) - ScaleCom: Scalable Sparsified Gradient Compression for
Communication-Efficient Distributed Training [74.43625662170284]
最先端プラットフォーム上でのDeep Neural Networks(DNN)の大規模分散トレーニングは,通信の厳しい制約が期待できる。
本稿では,学習者間の勾配分布の類似性を活用した新しい圧縮手法を提案する。
実験により,scalecomのオーバーヘッドは小さく,勾配トラフィックを直接低減し,高い圧縮率(65~400倍)と優れたスケーラビリティ(64名までの学習者,8~12倍のバッチサイズ)を提供する。
論文 参考訳(メタデータ) (2021-04-21T02:22:10Z) - On the Utility of Gradient Compression in Distributed Training Systems [9.017890174185872]
本稿では,勾配圧縮法の有効性を評価し,そのスケーラビリティを同期データ並列sgdの最適化実装と比較する。
意外なことに、勾配圧縮によって引き起こされる計算オーバーヘッドのため、バニラデータ並列トレーニングのネットスピードアップは、負でなくても限界である。
論文 参考訳(メタデータ) (2021-02-28T15:58:45Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z) - Sparse Communication for Training Deep Networks [56.441077560085475]
同期勾配降下(SGD)は、ディープラーニングモデルの分散トレーニングに最もよく用いられる手法である。
このアルゴリズムでは、各ワーカーは他のワーカーと局所勾配を共有し、すべてのワーカーの平均勾配を使ってパラメータを更新する。
いくつかの圧縮スキームについて検討し、3つの重要なパラメータが性能に与える影響を同定する。
論文 参考訳(メタデータ) (2020-09-19T17:28:11Z) - PowerGossip: Practical Low-Rank Communication Compression in
Decentralized Deep Learning [62.440827696638664]
本稿では,近隣労働者間のモデル差を直接圧縮する簡単なアルゴリズムを提案する。
中央集権的なディープラーニングのためにPowerSGDにインスパイアされたこのアルゴリズムは、パワーステップを使用して、1ビットあたりの転送情報を最大化する。
論文 参考訳(メタデータ) (2020-08-04T09:14:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。