A Brief Summary of Interactions Between Meta-Learning and
Self-Supervised Learning
- URL: http://arxiv.org/abs/2103.00845v1
- Date: Mon, 1 Mar 2021 08:31:28 GMT
- Title: A Brief Summary of Interactions Between Meta-Learning and
Self-Supervised Learning
- Authors: Huimin Peng
- Abstract summary: This paper briefly reviews the connections between meta-learning and self-supervised learning.
We show that an integration of meta-learning and self-supervised learning models can best contribute to the improvement of model generalization capability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper briefly reviews the connections between meta-learning and
self-supervised learning. Meta-learning can be applied to improve model
generalization capability and to construct general AI algorithms.
Self-supervised learning utilizes self-supervision from original data and
extracts higher-level generalizable features through unsupervised pre-training
or optimization of contrastive loss objectives. In self-supervised learning,
data augmentation techniques are widely applied and data labels are not
required since pseudo labels can be estimated from trained models on similar
tasks. Meta-learning aims to adapt trained deep models to solve diverse tasks
and to develop general AI algorithms. We review the associations of
meta-learning with both generative and contrastive self-supervised learning
models. Unlabeled data from multiple sources can be jointly considered even
when data sources are vastly different. We show that an integration of
meta-learning and self-supervised learning models can best contribute to the
improvement of model generalization capability. Self-supervised learning guided
by meta-learner and general meta-learning algorithms under self-supervision are
both examples of possible combinations.
Related papers
- ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning [49.447777286862994]
ConML is a universal meta-learning framework that can be applied to various meta-learning algorithms.
We demonstrate that ConML integrates seamlessly with optimization-based, metric-based, and amortization-based meta-learning algorithms.
arXiv Detail & Related papers (2024-10-08T12:22:10Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - General-Purpose In-Context Learning by Meta-Learning Transformers [45.63069059498147]
We show that Transformers and other black-box models can be meta-trained to act as general-purpose in-context learners.
We characterize transitions between algorithms that generalize, algorithms that memorize, and algorithms that fail to meta-train at all.
We propose practical interventions such as biasing the training distribution that improve the meta-training and meta-generalization of general-purpose in-context learning algorithms.
arXiv Detail & Related papers (2022-12-08T18:30:22Z) - Distill on the Go: Online knowledge distillation in self-supervised
learning [1.1470070927586016]
Recent works have shown that wider and deeper models benefit more from self-supervised learning than smaller models.
We propose Distill-on-the-Go (DoGo), a self-supervised learning paradigm using single-stage online knowledge distillation.
Our results show significant performance gain in the presence of noisy and limited labels.
arXiv Detail & Related papers (2021-04-20T09:59:23Z) - Learning to Generalize Unseen Domains via Memory-based Multi-Source
Meta-Learning for Person Re-Identification [59.326456778057384]
We propose the Memory-based Multi-Source Meta-Learning framework to train a generalizable model for unseen domains.
We also present a meta batch normalization layer (MetaBN) to diversify meta-test features.
Experiments demonstrate that our M$3$L can effectively enhance the generalization ability of the model for unseen domains.
arXiv Detail & Related papers (2020-12-01T11:38:16Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
democratized learning (Dem-AI) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems.
Inspired by Dem-AI philosophy, a novel distributed learning approach is proposed in this paper.
The proposed algorithms demonstrate better results in the generalization performance of learning models in agents compared to the conventional FL algorithms.
arXiv Detail & Related papers (2020-07-07T08:34:48Z) - A Comprehensive Overview and Survey of Recent Advances in Meta-Learning [0.0]
Meta-learning also known as learning-to-learn which seeks rapid and accurate model adaptation to unseen tasks.
We briefly introduce meta-learning methodologies in the following categories: black-box meta-learning, metric-based meta-learning, layered meta-learning and Bayesian meta-learning framework.
arXiv Detail & Related papers (2020-04-17T03:11:08Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
We provide fast, sample-efficient algorithms to address the dual challenges of learning a common set of features from multiple, related tasks, and transferring this knowledge to new, unseen tasks.
We also provide information-theoretic lower bounds on the sample complexity of learning these linear features.
arXiv Detail & Related papers (2020-02-26T18:21:34Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
We aim to provide a principled, unifying framework by revisiting and strengthening the connection between meta-learning and traditional supervised learning.
By treating pairs of task-specific data sets and target models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning.
This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning.
arXiv Detail & Related papers (2020-02-03T06:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.