論文の概要: Neural Code Summarization
- arxiv url: http://arxiv.org/abs/2103.01025v1
- Date: Fri, 26 Feb 2021 16:04:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 17:01:43.007474
- Title: Neural Code Summarization
- Title(参考訳): ニューラルコード要約
- Authors: Piyush Shrivastava
- Abstract要約: コード要約は意味論的に意味のある読みやすい要約を生成するタスクである。
このようなキャプションをベンチマークおよびカスタムデータセットに基づいて推論する自動アプローチが提案されている。
- 参考スコア(独自算出の注目度): 0.6091702876917281
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Code summarization is the task of generating readable summaries that are
semantically meaningful and can accurately describe the presumed task of a
software. Program comprehension has become one of the most tedious tasks for
knowledge transfer. As the codebase evolves over time, the description needs to
be manually updated each time with the changes made. An automatic approach is
proposed to infer such captions based on benchmarked and custom datasets with
comparison between the original and generated results.
- Abstract(参考訳): コードの要約は、意味的に意味があり、ソフトウェアの推定タスクを正確に記述できる読みやすい要約を生成するタスクです。
プログラム理解は、知識伝達の最も面倒なタスクの1つになっている。
コードベースが時間とともに進化するにつれて、変更を行うたびに記述を手動で更新する必要があります。
ベンチマークとカスタムデータセットに基づくキャプションを,オリジナルと生成結果の比較により推定する自動アプローチを提案する。
関連論文リスト
- From Symbolic Tasks to Code Generation: Diversification Yields Better Task Performers [1.6958018695660049]
コードに関連するタスクを超えて、より多様な命令セットがコード生成のパフォーマンスを向上させることを示す。
我々の観察から,命令調整セットのより多様な意味空間が,命令に従う能力とタスクの実行能力を大幅に向上させることが示唆された。
論文 参考訳(メタデータ) (2024-05-30T07:54:07Z) - Summarization-based Data Augmentation for Document Classification [16.49709049899731]
文書分類のための簡易かつ効果的な要約型データ拡張であるSUMMaugを提案する。
まず、対象文書分類タスクの学習が容易な例を示す。
次に、生成された擬似例を用いてカリキュラム学習を行う。
論文 参考訳(メタデータ) (2023-12-01T11:34:37Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - Python Code Generation by Asking Clarification Questions [57.63906360576212]
本稿では,この課題に対して,より斬新で現実的なセットアップを導入する。
我々は、自然言語記述の過小評価は、明確化を問うことで解決できると仮定する。
我々は、生成した合成明確化質問と回答を含む自然言語記述とコードのペアを含む、CodeClarQAという新しいデータセットを収集し、導入する。
論文 参考訳(メタデータ) (2022-12-19T22:08:36Z) - Text Summarization with Oracle Expectation [88.39032981994535]
抽出要約は、文書の中で最も重要な文を識別し、連結することによって要約を生成する。
ほとんどの要約データセットは、文書文が要約に値するかどうかを示す金のラベルを持っていない。
本稿では,ソフトな予測に基づく文ラベルを生成する,シンプルで効果的なラベル付けアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:10:08Z) - Conditioned Text Generation with Transfer for Closed-Domain Dialogue
Systems [65.48663492703557]
条件付き変分オートエンコーダを用いて,意図特化文の生成を最適に学習し,制御する方法を示す。
クエリ転送と呼ばれる新しいプロトコルを導入し、大規模で遅延のないデータセットを活用できるようにします。
論文 参考訳(メタデータ) (2020-11-03T14:06:10Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
本稿では, 埋め込みの自動結合(ACE)を提案し, 構造予測タスクにおける埋め込みのより優れた結合を見つけるプロセスを自動化する。
我々は、強化学習の戦略に従い、制御器のパラメータを最適化し、タスクモデルの精度に基づいて報酬を計算する。
論文 参考訳(メタデータ) (2020-10-10T14:03:20Z) - Incomplete Utterance Rewriting as Semantic Segmentation [57.13577518412252]
本稿では, セマンティックセグメンテーションタスクとして定式化する, 斬新で広範囲なアプローチを提案する。
スクラッチから生成する代わりに、このような定式化は編集操作を導入し、単語レベルの編集行列の予測として問題を形作る。
私たちのアプローチは、推論における標準的なアプローチの4倍高速です。
論文 参考訳(メタデータ) (2020-09-28T09:29:49Z) - Self-Supervised Contrastive Learning for Code Retrieval and
Summarization via Semantic-Preserving Transformations [28.61567319928316]
Corderは、ソースコードモデルのための自己教師付きコントラスト学習フレームワークである。
重要なイノベーションは、ソースコードモデルをトレーニングし、類似した、異種のコードスニペットを認識するように要求することです。
Corderで事前訓練されたコードモデルは、コード・ツー・コード検索、テキスト・ツー・コード検索、およびコード・ツー・テキスト要約タスクにおいて、他のベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2020-09-06T13:31:16Z) - Align then Summarize: Automatic Alignment Methods for Summarization
Corpus Creation [8.029049649310211]
自動テキスト要約の最先端は、主にニュース記事を中心に展開されている。
我々の研究は、ニューラル・サマリゼーションに適したデータセットを得るために、レポートに関するセグメンテーションとコーディネートから構成される。
本報告では, 連携した公開ミーティングの新たなコーパスにおいて, 自動アライメントと要約性能について報告する。
論文 参考訳(メタデータ) (2020-07-15T17:03:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。